CPSC 427 - A0: Video Game Programming
A Tiny Entity Component System in C++

September 14, 2021

When joining from the waitlist, the deadline for this assignment is five days after you
were admitted to the course (which is after the deadline listed on the course webpage).

1 Introduction

The goal of this assignment is to introduce you to the entity component system (ECS)
pattern, which is omnipresent in game development. The assignment is intended to bring
everybody on the same page in terms of programming essentials and sets the foundation for
the other assignments and the course project. It will also prepare you for implementing your
own games more efficiently and conveniently by using the ECS pattern.

2 Code and Installation (10 %)

Download the tinyECS library from GitHub: https://github.com/hrhodin/tinyECS.git
The directory src contains the entry point ecs_demo.cpp. The tinyECS library is one folder
down, tinyECS/tiny_ecs.hpp and tinyECS/tiny_ecs.cpp.

The project uses CMake. If CMake is not already installed, you can download and install
it from the CMake website: https://cmake.org/download/; or use the package manager
of your choice on linux/mac systems.

On windows, it should be sufficient to open the repository folder (the one containing the
CMakeLists.txt) with Visual Studio (you may have to install the VS CMake extension) and
to hit build.

In all other cases, create an empty directory as the build directory, which we assume is
named build. We recommend using template/build. The .gitignore file is configured to
ignore any files with build in the path, to avoid tracking temporary files. You can configure
the project using CMake GUI or the command line. For the GUI, enter the repository folder
(which should contain a CMakeLists.txt file) as Source and the build folder as the Build.
Then, press configure, and if the configuration if successful, press generate.

For the command line, cd inside the build and run:

cmake [path_of_assignment_template] -DCMAKE_BUILD_TYPE=[Debug|Release]

1


https://github.com/hrhodin/tinyECS.git

CPSC 427 Programming Preliminaries (Assignment 0, individual work)

Now you can build the generated project using make or your favorite IDE (e.g., visual
studio or sublime). You require a compiler that supports C++14. If you use Visual Studio
or Xcode, you should specify it in CMake. It will then generate the respective VS/Xcode
project files.

2.1 Debugging

To verify that the installation was successful, start the program in your favorite IDE.
If on Windows and CMake configured for visual studio, you can open the visual studio
tinyECS.sln in your build folder.

The demo program should print a few lines to the terminal and then exit. Set a breakpoint
in the main () function in ecs_demo. cpp and run in debug mode until that point to verify that
you can use your IDE’s debugging capabilities. Make yourself familiar with the inspection
of local and global variables and stepping through instructions in debug mode.

2.2 Entity Component System (ECS) basics

The ECS pattern stores the entire game state into components that are associated to entities.
Each entity uniquely identifies an object, such as a fish or turtle in the game. Whereas the
components equip entities with properties, such as name and movement capabilities. This
compositional scheme is an alternative to inheritance, which, among other shortcomings,
suffers from the multiple-inhertance problem, also called the diamond problem.

We created a simple example in the main() function in ecs_demo.cpp that implements
horse, fish, and turtle characters, once using object oriented inheritance and once using the
ECS. Inspect the provided toy example to get familiar with creating components in tinyECS
by calling insert() or emplace() and retrieving components with the get () function. It
is also easy to loop over all entities or components of a type. Examples are given for each
operation.

Task 1: (50 %, prereq C++ tutorial) To get proficient with ECS, add an ” American
Dipper” that can walk, swim, and fly. Moreover, remove the horse with registry.remove
_all _components_of (...). After that, change the name of the fish to ”Old Fish” (it aged
a lot during the program execution).

This toy example has no graphical output but prints to the terminal. Make sure that your
changes are reflected in the output. In particular, when modifying properties of components
stored in the ECS registry, make sure to work on the reference returned by get or create
a pointer to it. It is a common mistake to work with a copy of the object, which does not
change the original properties stored in the ECS registry.

The S in ECS stands for systems that separate the game logic from the entities and
their properties, such as the rendering system (renderer.cpp) that has a central role in
Assignment 1. For now, we look deeper into the ECS internals.

Page 2 of 5



CPSC 427 Programming Preliminaries (Assignment 0, individual work)

2.3 The tinyECS library and C++ templates

C++ is a statically typed language, which brings many performance advantages (~ 10-times
faster than the interpreted python code and ~ 2-times faster than just-in-time compiled Julia
language). However, this leads to complications when working with dynamic objects, such as
defining a function that can work on multiple argument types. See the following article for a
detailed introduction on using templates http://www.cplusplus.com/doc/oldtutorial/
templates/ and attend the course tutorials to get an interactive introduction.

The tinyECS implementation uses a template class to collect components of an arbitrary
type and to associate each component with an entity without having to duplicate code.
The central part in our tinyECS implementation is the ComponentContainer defined in
tiny ecs.hpp. It is merely a std: :map that maps entities to components stored in tightly
packed containers. It could be implemented as follows with Entities having a unique integer
id:

template <typename Component>
struct ComponentContainer
{
// Map from Entities to Components
std: :map<unsigned int, Component> entity_component_map;

// Inserting a Component c associated to Entity e
void insert(Entity e, Component&& c) {
entity_component_mapl[e.id] = c;

+;

// Check if entity has a component of type ’Component’
bool has(Entity e) {
return entity_component_map.count(e.id) > 0;

+;

// Return the component of an entity
Component& get(Entity e) {
return entity_component_map[e.id];

+;

// A wrapper to return the component of an entity
void remove(Entity e) {
entity_component_map.erase(e.id);
I
I

In practice, to increase efficiency, additional steps are taken to make the memory layout
linear, to lookup the component associated to an entity in constant time with a hashmap,
to avoid unnecessary copies with move operations, and by using parameter packs (a C++11

Page 3 of 5


http://www.cplusplus.com/doc/oldtutorial/templates/
http://www.cplusplus.com/doc/oldtutorial/templates/

CPSC 427 Programming Preliminaries (Assignment 0, individual work)

feature) for the emplace function. It helps to think of it as a simple std: :map, yet, do
inspect the tinyECS code (tinyECS/tiny ecs.hpp and tinyECS/tiny ecs.cpp) to get an
idea of the inner workings.

As for the standard std: :map container, the ComponentContainer can be explicitly in-
stantiated for any Component class, for instance for the Swim and Walk classes,

ComponentContainer<Swim> registry_water_animals;
ComponentContainer<Walk> registry_land_animals;
registry_water_animals.insert(fish_entity, Swim());
registry_land_animals.insert(horse_entity, Walk());

We group all the containers in the game in a RegistryECS class. Don’t forget to add them
there when you add new components to your game.

Task 2: (40 %, prereq ECS Lecture) The tinyECS can be used to store data in
the array of structs (AoS) or struct of arrays (SoA) data layout; just by adding differently
structured components. To enable animal motion, we would like to equip animals with
variables storing the position x and the velocity y (for simplicity, you can assume a 1D
game, where both are scalars).

1. Create and add one or more new components to give the fish and dipper velocity and
position information with an AoS layout (the ’array’ runs over entities; fish & dipper).

2. Create new components to give the turtle position and velocity information in the SoA
layout (the 'array’ runs still over all entities; in this case a single turtle).

Hint1: Inspect the tinyECS implementation to see which part can take the role of the array.
Hint2: You will have to add new component types to the RegistryECS class but not edit
any of the other tinyECS files.

Explain which part of the ECS framework takes the role of the ’array’ and which the
'struct’ in each of the two variants. Give your answer in the README.md (as specified in
Section 3.2, you can overwrite the README contained in the tinyECS framework).

This is just a demonstration of the differences of AoS and SoA. Think about which of
the variants you would like to use for your game; mixing them would make little sense.

Grading: For full points the solution must be correct and concise. You will receive grades
with handback.

3 Hand-in Instructions

1. Create a folder called cs-427 with subfolder a0. Copy all your source and CMake files
as present in the template to this folder (same folder structure). Double check that
you excluded all generated files, such as /build, .vs, /out! These would consume a lot
of space on our server.

Page 4 of 5



CPSC 427 Programming Preliminaries (Assignment 0, individual work)

2. In addition, create a README.md file (Markdown language as used on github) that
includes your name, student number, and any information you would like to pass on
to the marker.

3. The assignment should be handed in with the exact command handin cs-427 a0

This will handin your entire a0 directory tree. If you want to know more about this
handin command, use: man handin. You can also use the web interface on your myCS
page to upload the assignment.

Note, do not publish your solution on github or any other place. Neither during the
course nor after; both is considered cheating.

Page 5 of 5



	Introduction
	Code and Installation (10 %)
	Debugging
	Entity Component System (ECS) basics
	The tinyECS library and C++ templates

	Hand-in Instructions

