Tutorial 2 Question

- Text: Ch. 42: Pr. 54.
- An ancient club is found that contains $190~\rm g$ of carbon and has an activity of $5.0~\rm decays$ per second. Determine its age assuming that in living trees the ratio of $^{14}\rm C/^{12}\rm C$ atoms is about 1.3×10^{-12} .

Solution

• We know $N(t) = N_0 e^{-\lambda t}$. Want to solve for t, so

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N}.$$

- Need to find λ , N_0 , and N.
- First λ . Given $T_{1/2} = \frac{\ln 2}{\lambda}$ we find

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{5730 \text{ yr}}$$
$$= 1.21 \times 10^{-4} \text{ yr}^{-1}$$
$$= 3.83 \times 10^{-12} \text{ s}^{-1}.$$

(Note: 1 yr $\approx 3.166 \times 10^7 \text{ s.}$)

Solution, contd

- Now N_0 . Initially, a fraction 1.3×10^{-12} of the carbon was $^{14}\mathrm{C}$.
- Using that and $\begin{bmatrix} 1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} \end{bmatrix}$ we can calculate the initial number of $^{14}\mathrm{C}$ atoms,

$$N_0 = (1.3 \times 10^{-12})(0.190 \text{ kg}) \times \frac{1 \text{ u}}{1.66 \times 10^{-27} \text{ kg}} \times \frac{1 \text{ atom}}{12 \text{ u}}$$

= $1.2 \times 10^{13} \text{ atoms}.$

- We used an atomic mass of $12~\mathrm{u}$ because almost all of the carbon is $^{12}\mathrm{C}$.
- Lastly N. We are given the activity $\left|\frac{dN}{dt}\right| = 5.0 \text{ atoms/s}$.

Solution, contd

• Differentiating $N(t) = N_0 e^{-\lambda t}$ gives

$$\frac{dN}{dt} = -\lambda N_0 e^{-\lambda t}$$
$$= -\lambda N.$$

So we find

$$N = \frac{1}{\lambda} \left| \frac{dN}{dt} \right|$$

$$= \frac{1}{3.83 \times 10^{-12} \text{ s}^{-1}} \times 5.0 \text{ atoms/s}$$

$$= 1.3 \times 10^{12} \text{ atoms.}$$

Solution, contd

ullet That's all the information we need to solve for t,

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N}$$

$$= \frac{1}{3.83 \times 10^{-12} \text{ s}^{-1}} \ln \left(\frac{1.2 \times 10^{13} \text{ atoms}}{1.3 \times 10^{12} \text{ atoms}} \right)$$

$$= 5.8 \times 10^{11} \text{ s}$$

$$= 18,000 \text{ yr.}$$

The club is around 18,000 years old.

