Tutorial 3 Question

- Text: Ch. 43: Pr. 48.
- ${}_{27}^{57}$ Co emits 122 keV γ -rays. If a 70 kg person swallowed 1.85 μ Ci of ${}_{27}^{57}$ Co, what would be the dose rate (rad/day) averaged over the whole body? Assume that 50 percent of the γ -ray energy is deposited in the body.
- Other information:
 - $1 \text{ keV} = 1.60 \times 10^{-16} \text{ J}.$
 - Cobalt-57 has a half-life of 270 days.

Solution

• The absorbed dose is $dose_{abs} = E/m$. We want to find the dose rate,

dose rate =
$$\frac{\text{dose}_{\text{abs}}}{\Delta t} = \frac{E}{m\,\Delta t}$$

where $\Delta t = 1$ day.

• We are given the mass of the absorbing material, m = 70 kg so all we need to find is the energy absorbed E over interval Δt .

Solution, contd

We are given the activity of the sample and the energy emitted per decay. To calculate the energy absorbed we first need the total number of decays in a day,

$$\Delta N = \left| \frac{dN}{dt} \right| \Delta t$$

= $1.85 \times 10^{-6} \text{ Ci} \times \frac{3.70 \times 10^{10} \text{ decays/s}}{1 \text{ Ci}} \times 1 \text{ day} \times \frac{86400 \text{ s}}{1 \text{ day}}$
= $5.91 \times 10^9 \text{ decays.}$

(This assumes that the half-life of ${}^{57}_{27}$ Co is much longer than a day, so that the activity is roughly constant throughout the day.)

Solution, contd

 Given the number of decays and the energy emitted per decay we can calculate the total energy absorbed (50 percent of the emitted energy),

$$E = 50\% \times \Delta N \times (\text{energy per decay})$$

$$= 0.50 \times 5.91 \times 10^9 \text{ decays} \times 122 \text{ keV} \times \frac{1.60 \times 10^{-16} \text{ J}}{1 \text{ keV}}$$
$$= 5.77 \times 10^{-5} \text{ J}.$$

So the dose rate is

dose rate =
$$\frac{E}{m\Delta t} = \frac{5.77 \times 10^{-5} \text{ J}}{70 \text{ kg} \times 1 \text{ day}} \times \frac{1 \text{ rad}}{0.01 \text{ J/kg}}$$

= $8.24 \times 10^{-5} \text{ rad/day}$.

