Physics 153 Section T0H - Week 8 RC Circuits

Rik Blok

March 9, 2000

1 Comments

Some of you really bombed the last assignment so I'll let you hand it in again (with some late penalties).

2 RC Circuits

In RC circuits there is a lag as the charge accumulates/dissipates on the capacitor. So, instead of constant voltages, currents, etc., all these properties approach their final values exponentially:

$$Q(t) - Q(\infty) = [Q(0) - Q(\infty)]e^{-t/\tau}$$
 (1)

$$I(t) - I(\infty) = [I(0) - I(\infty)]e^{-t/\tau}$$
 (2)

$$V(t) - V(\infty) = [V(0) - V(\infty)]e^{-t/\tau}.$$
 (3)

Notice you only need to memorize one form of equation which applies to all these properties.

The time constant is

$$\tau = RC \tag{4}$$

where C is the capacitance and R is the resistor(s) which are in series with the capacitor (I think).

2.1 Initial and final values

The trick to solving the exponential equations is figuring out what each of the initial and final values are. Here are some hints:

- 1. The current across a capacitor always goes down to zero $I_C(\infty) = 0$.
- 2. Without a voltage source driving them, capacitors discharge $Q(\infty)=0$.
- 3. If the capacitor has no charge on it, it acts like a short circuit (wire with no resistance).

3 Example

(From Tipler Ch. 23 #61.)

For the circuit above, (a) what is the initial battery current immediately after switch S is closed? (b) What is the battery current a long time after switch S is closed? (c) If the switch has been closed for a long time and is then opened, find the current through the $600\,\mathrm{k}\Omega$ resistor as a function of time.

4 Solution

4.1 Part (a)

"What is the initial battery current immediately after switch S is closed?"

Initially there is no charge on the capacitor so it is a short circuit and no current goes through the $600\,k\Omega$ resistor:

So the current through the battery is just

$$I_V(0) = \frac{V}{R} = \frac{50}{1.2 \times 10^6} = 41.7 \,\mu\text{A}.$$
 (5)

4.2 Part (b)

"What is the battery current a long time after switch S is closed?"

After a long time the capacitor current goes to zero so we basically just have a battery and two resistors in series:

So now the current across the battery is just

$$I_V(\infty) = \frac{V}{R} = \frac{50}{1.8 \times 10^6} = 27.8 \,\mu\text{A}.$$
 (6)

4.3 Part (c)

"If the switch has been closed for a long time and is then opened, find the current through the $600\,\Omega$ resistor as a function of time."

After a long time the voltage across the battery (or the $600\,\Omega$ resistor) has built up to

$$V_C(\infty) = I_V(\infty)R = 27.8 \cdot 600 = 16.7 \,\text{V}.$$
 (7)

Now we reset our clock to zero and open the switch. Then we have the following circuit with just a resistor and a capacitor:

The capacitor starts with the final voltage it had when the switch was closed

$$V_C'(0) = V_C(\infty) = 16.7 \,\text{V}$$
 (8)

so the initial current through the resistor is

$$I'(0) = \frac{V_C'(0)}{R} = \frac{16.7}{600} = 27.8 \,\mu\text{A}. \tag{9}$$

(The *prime* denotes stuff after the switch was opened.)

The capacitor (and resistor) current must eventually go to zero so $I'(\infty)=0$ and the time constant of the circuit is just

$$\tau = RC = 600 \cdot 2.5 = 1.5 \,\mathrm{s}.$$
 (10)

So we have all the bits we need to fill in the equation:

$$I'(t) - I'(\infty) = [I'(0) - I'(\infty)]e^{-t/\tau}$$
 (11)

$$I'(t) = (27.8 \,\mu\text{A})e^{-t/(1.5 \,\text{s})}.$$
 (12)

5 Assigned Problem

(From Tipler Ch. 23 #60.)

For the above circuit, (a) what is the initial battery current immediately after switch S is closed? (b) What is the battery current a long time after switch S is closed? (c) What is the current in the $600\,\Omega$ resistor as a function of time?