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1 Why study the stock market?

Market is a strongly-interacting, many-particle, non-equilibrium sys-
tem. 'Nuff said.

Markets have surprising dynamics. Example: Were long believed to
have normal fluctuations. Mandelbrot [1] discovered price fluctuations
exhibited scaling: returns

p(t)
ra(t) = log ——— 1
() =log s (1)
have power law distribution tail
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over orders of magnitude of sampling interval A.
Scaling exponent is universal, o ~ 1.4 [2].

Power law and universality are suggestive of a critical phase transition.

2 How does one study the stock mar-
ket?
Analyze statistical properties of fluctuations. (Already been done.)

Try to build “microscopic” models which capture important features.
(My approach.)



3 What is empirically known?

3.1 Fat tails

Distribution of returns falls off much more slowly than a Gaussian so
frequency of large fluctuations much more common than might be
expected.

For example, daily returns of the Dow Jones Industrial Average for the
last hundred years [3]:
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Best described by a truncated Lévy flight with power law tails which
are attenuated.



Frequency of a 10-standard deviation magnitude event is about once
every 100 years, but for Gaussian is once every 10?" years.

3.2 Memory

No autocorrelation of returns. Can’t predict movements from history:
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But absolute values of returns are correlated; autocorrelation falls off
as power law (much slower than exponential):
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Hurst exponent H = 0.9 (very strong correlations).
Means large fluctuations tend to be clumped together—clustered volatil-
ity. Given a large movement can expect another one, but can't predict

direction.

So the market does have a memory but can't use it to get rich!



4 How is the market modeled?

Built two models, CSEM and DSEM.

Both model N individual “agents” trading on a market with one stock.
Agents trade shares for cash and price emerges from their decisions.
Goal is to keep a certain fraction ¢ of wealth invested in stock [4].

Models differ in how they choose ...

4.1 CSEM

Agents attempt to forecast tomorrow’s return.

Forecast contains stochastic term €. Chosen from Gaussian distribu-
tion with mean zero and standard deviation o, (same for all agents).

<7°t+1>6 - <7't+1> + € (3)
Var [ry1]), = Var[riq] + o7 (4)

Submit trade orders to achieve investment fraction

- <Tt+1>e
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(Subject to 0 < i < 1.)



4.2 DSEM

|deal investment fraction affected by stochastic news releases and price
fluctuations. Define evidence [5]

eElog[ : ] (6)

I

Then on news release 7 ~ N(0, 1) evidence changes by
Ae x (7)
and on price change (log-return r)

Ae=r,T. (8)

Strength of response to price movements characterized by parameter
r,. Like confidence in price movement. (Can be positive or negative.)

CSEM DSEM
Centralized Decentralized
(trade with market maker) | (trade with each other)
Price set by market maker | Price set by agents
Parallel updating Poisson updating
Stochastic forecasts Stochastic news events




5 Where’s the physics?

5.1 CSEM

After transient period price series tends to fluctuate around some
steady-state with some maximum p,,,,.:
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As forecast error o, drops, confidence in stock grows and price climbs:
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Price diverges at some non-zero o, = .. Looks like critical point

Pmar X (Ue _ Uc)_b- (9)

Fitting to power law for various system sizes IV gives finite-size scaling.
Best fit exponent b = 1.73 £ 0.03.



Critical point...
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So, as 0. — o, correlations between agents build up such that the
dynamics destabilize. Correlation length (number of agents) grows as

£ x (oe—0a.)" (10)

with v = 1.8 £ 0.1. (Would be interesting to know if this is an
established universality class.)
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5.2 DSEM
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In DSEM interesting parameter is price response r, which sets memory.
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Two phase transitions:

1) Goes to H =1 for 7, > 1. Critical point. (Correlations spanning
all agents.)

Fitting to power law
1= Hr,) o (1—1,)" (11)

gives exponent b = 0.19 £ 0.02,

2) Goes to H ~ 0 for r, < —0.33. First order transition. (Nucleation,
intermittency.)
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6 How well do they describe real mar-
kets?

DSEM was more successful. When control parameter spanned critical
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Short memory:
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Note timescale is “ticks"—number of trades—not days.
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Clustered volatility:
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Hurst exponent is H = 0.7, lower than empirical H = 0.9 (but still

significant).
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7 What was all that, again?

Built two models to explain market dynamics.
Both contain critical points.

Both are best able to replicate observed properties when control pa-
rameter spans critical point. (DSEM is quite good.)

Only other model which exhibits these properties, Cont-Bouchaud
herding model [6], also is near critical point.

8 What’s next?

Models suggest empirical markets may be near critical point. If so,
why do they self-organize toward criticality (SOC)?
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9 Where can I find out more?

My thesis will soon be available from
http://rikblok.cjb.net/phd (for you insomniacs).

You can get the simulations described here (source code and 32-bit
MS-Windows executables) from

http://rikblok.cjb.net/csem and
http://rikblok.cjb.net/dsem.

Or check out these...

References

[1] B. B. Mandelbrot, J. Business 36, 394 (1963).
[2] R. N. Mantegna and H. E. Stanley, Nature 376, 46 (1995).

[3] Dow Jones Industral Average: Daily close, 1896-1999, avail-
able from http://www.economagic.com/em-cgi/data.exe/
djind/day-djiac, provided by Economagic.com.

[4] R. C. Merton, Continuous-Time Finance (Blackwell, Cambridge,
1992).

[5] E. T. Jaynes, ftp://bayes.wustl.edu/pub/Jaynes/book.
probability.theory/ (unpublished).

[6] R. Cont and J.-P. Bouchaud, cond-mat/9712318 (unpublished).

17



