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Abstract
A brief introduction to Lévy flight and fractional Brownian motion from the experimentalist’s

perspective. Simple tools to analyze these timeseries, the Zipf plot and dispersional analysis,

are presented. As a demonstration, these tools are applied to intraday foreign exchange data to

determine the Lévy and Hurst exponents.
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Brownian motions

• Standard Brownian motion = uncorrelated Gaussian
increments (finite variance), α = 2, H = 1/2

• Fractional Brownian motion (fBm) = finite variance
but correlations extend over entire history, H 6= 1/2
(0 < H < 1)

• Lévy flight = uncorrelated increments but divergent
variance, α < 2 (mean also diverges if α < 1)

PSfrag replacements

fractional Brownian

L
év

y

standard Brownian

H

α

June 6, 2002 1 of 25



Stat. Props. of Fin. Timeseries Rik Blok

PSfrag replacements

H = 0.5, α = 2

H = 0.1, α = 2
H = 0.9, α = 2

H = 0.5, α = 1.3

PSfrag replacements

H = 0.5, α = 2

H = 0.1, α = 2

H = 0.9, α = 2
H = 0.5, α = 1.3

PSfrag replacements

H = 0.5, α = 2
H = 0.1, α = 2

H = 0.9, α = 2

H = 0.5, α = 1.3

PSfrag replacements

H = 0.5, α = 2
H = 0.1, α = 2
H = 0.9, α = 2

H = 0.5, α = 1.3

June 6, 2002 2 of 25



Stat. Props. of Fin. Timeseries Rik Blok

Self-affine

If timescale zoomed by factor a then process looks statis-

tically identical by scaling series by:
fBm ⇒ b = aH

Lévy ⇒ b = a1/α
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Warning: some tools to calculate exponent rely on self-
affinity and are unable to distinguish between fBm and
Lévy flight. They will return exponent which could be
either H or 1/α.
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Universal

Q: Why should we be interested in these series?

A: Are observed in natural and man-made systems. Param-
eters H and α are often universal, independent of system
details.

Sorry: I had planned to have some examples here but ran
out of time. I hope to include some before uploading to
the web.

My purpose is to explain how to obtain parameters from
empirical data.
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Lévy flight

Like standard Brownian motion but with overabundance of
very large jumps.
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α = 1.3

If distribution of increments r(t) = x(t)− x(t− ∆) with
stepsize ∆ denoted by p(r) then tails of distribution decay
as a power law :

p(r) ∼ 1

|r|α+1 as |r| → ∞ (1)

for 0 < α < 2. (For α = 2 tails are Gaussian.)
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Can use this property to recover α from dataset.

Challenge: Power law tail derives from low frequency
limit of Fourier representation (I think). A higher order
expansion would be invaluable!

Easier to work with cumulative distributions C±(r),

C+(r) =
∫∞
r p(r′)dr′ = prob. sample > r (2)

C−(r) =
∫ r

−∞ p(r′)dr′ = prob. sample < r. (3)

Then

C±(r) ∼
1

|r|α as |r| → ∞. (4)

Want to fit this distribution to empirical data. But first...
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Finite-size effects: A tail of tails

Power-law tails mean variance diverges. Cannot be true
for finite dataset.

Since variance finite, should obey Central Limit Theorem
on largest scales.

Can account for this by modifying the fitting function,

C±(r) ∼
f (r/rc)

|r|α , (5)

where new parameter rc indicates onset of finite-size ef-
fects.

Need to fit on log-scale to emphasize tail.
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For normal distribution

log f (x) = log

{

1

2

[

1− erf(x/
√
2)
]

}

(6)

≈ − log 2 +
√

2

π
x +O(x2) (7)

which should describe cutoff of tails. (This is an argument,
not a proof.)

So good fitting function is [1]

logC±(r) = −α log |r| −
√

2

π

|r|
rc
+ γ, (8)

because fit is linear in parameters (α, β, γ) if we use β =
1/rc. (γ is normalization constant.)

Effect of finite system size is to truncate power law tail by
an exponential cut-off. Well established, empirically.
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Data analysis: Zipf plot

Good choice because the Zipf plot method will not be
tricked by other self-affine signals, like fBm.

Recipe

1. Rank order increments r.
2. Zipf plot.
3. Fit curve.
4. Interpret results.

1. Rank order increments r

Difference series r(t) = x(t)−x(t−∆) at highest possible resolution
∆. If discrete process may be better to sample every event instead of

regular intervals [2, 3, 4, App. B].

Need N > 1, 000 data points. Prefer N > 10, 000.
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Trick: Center increments around median
r(t) = r(t)−med [r]. Helpful if you suspect α < 1.

Rank order (sort) increments in both increasing/decreasing
orders (to analyze both tails).

2. Zipf plot

For each sort direction plot Rank vs. |r| on log-log scale.
(Traditional Zipf plot is transposed x↔ y.). Eg.
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3. Fit curve

As N increases should get Ranki → NC(ri) for each tail.

So can fit

−α log r −
√

2

π

r

rc
+ γ (9)

to log Rank via parameters α, rc and γ.

Only want to fit over tail. Rule of thumb: fit over y-range
3 < Rank < 0.003N (works for 0.4 . α . 1.9). Eg.
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4. Interpret results

Must have 0 < α < 2 [5].

Power law (straight line on log-log graph) must hold over
at least one decade (x-axis) to be significant.

If either condition fails then Lévy tail not significant so
take α ≡ 2 (Gaussian).

Test: Synthetic Lévy series

Synthesized timeseries of 100,000 datapoints for
α = 0.1, 0.2, . . . , 2.0.3

Compare fitted αout to input αin.

3Contact me (rikblok@shaw.ca) if you want to know how to generate
synthetic Lévy or fBm datasets.
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Each fitted a power law over at least one decade except
αin = 2 (Gaussian; returned αout ≈ 10).

Also tested synthetic fBm series—always returned αout >
2 indicating no Lévy tail.
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Fractional Brownian motion
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Fractal dimension, D = 2−H, is space filled by signal.

Correlations extend over entire history of series.
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Diffusion

Standard Brownian motion, or random walk, diffuses as
σ ∼ t1/2.

PSfrag replacements
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In general, fBm diffuses as σH ∼ tH. (H > 1/2 ⇒
superdiffusion, H < 1/2 ⇒ subdiffusion.)

Can use this to estimate H from dataset.
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Data analysis: Dispersion

Methods not to use (and why):

• Rescaled range (Hurst, R/S): strong bias H → 0.7.
• Scaled window variance/detrended fluctuation: tricked

by Lévy flight.
• Autocorrelation: only for persistent series H > 1/2.

Dispersional analysis will not confuse Lévy flight with fBm
and works for all 0 < H < 1.

Slight bias for H > 0.9. (Underestimates H.)

Recipe

1. Get increments r.
2. Dispersional analysis.
3. Fit curve.
4. Interpret results.
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1. Get increments r

Difference series r(t) = x(t) − x(t − ∆). Increments of
fBm called fractional Gaussian noise (fGn).

Again, need N > 1, 000 data points. Prefer N > 10, 000.

2. Dispersional analysis

Average r over bins of length L (initially L = 1),

r
(L)
i =

(i+1)L−1
∑

j=iL

rj. (10)

Estimate of diffusion on scale L is given by4 (trust me!)

σ(L) ∼ L
√

Var
[

r(L)
]

. (11)

4Normally, dispersional analysis doesn’t multiply by L so the slope of the
graph is H − 1.
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Plot deviation, σ(L) versus bin size L on log-log scale.

Double bin size L→ 2L and repeat.

3. Fit curve

On log-log scale should have linear relationship

log σ(L) = H logL + C (12)

where slope is Hurst exponent H.

In practice, finite data series means memory finite so best
to skip last five datapoints when fitting.

4. Interpret results

Only thing to be aware of is that series might be multi-
fractal, with distinct H values on different L-scales.
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If concerned H may be due to artifacts, shuffle data to
break correlations and reanalyze. Should get H ≈ 1/2.

Test: Synthetic fBm series

Synthesized timeseries of 100,000 datapoints for
H = 0.05, 0.10, . . . , 0.95.

Compare fitted Hout to input Hin.
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Also tested synthetic Lévy flight series. Returned H =
0.49 . . . 0.51 for all α.
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Empirical example(s)

Swiss Franc versus U.S. Dollar exchange
rate

Tickwise data [6] sampled at 1 minute intervals. N =
99, 985.

Price is multiplicative process so convert to log-price before
processing. (Brownian motions are additive.)
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Zipf plot: + tail, α = 1.71± 0.07
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Zipf plot: − tail, α = 1.60± 0.07

Evidence of a stable Lévy distribution with exponent α ≈
1.65.
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Dispersion: H = 0.50± 0.02

No memory in price/return history.

Volatility

However, consider squared returns r2, known as volatil-
ity(?) [7, 8]. Measures how much price is fluctuating
without regard for direction of movements.
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Multifractal

H = 0.51± 0.01
H = 0.70± 0.03

No memory on short timescales but crosses over to posi-
tively correlated volatility for timescales > 300 minutes.

Not an artifact of Lévy distribution—synthetic series main-
tained H ≈ 1/2 when squared.

In summary, series exhibits fat tails with exponent α =
1.6−1.7, no memory in returns, but persistence in squared
returns (H = 0.7) for timescales longer than ∼5 hrs.
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