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Abstract

A brief introduction to Lévy flight and fractional Brownian motion from the experimentalist’s

perspective. Simple tools to analyze these timeseries, the Zipf plot and dispersional analysis,

are presented. As a demonstration, these tools are applied to financial and meteorological

data to determine the Lévy and Hurst exponents.
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1 Brownian motions

• Standard Brownian motion = uncorrelated Gaussian incre-
ments (finite variance), α = 2, H = 1/2

• Fractional Brownian motion (fBm) = finite variance but cor-
relations extend over entire history, H 6= 1/2 (0 < H < 1)

• Lévy flight = uncorrelated increments but divergent variance,
α < 2 (mean also diverges if α < 1)
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1.1 Self-affine

If timescale zoomed by factor a then process looks statistically iden-

tical by scaling series by:
fBm ⇒ b = aH

Lévy⇒ b = a1/α
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My goal is to explain how to obtain parameters H and α from
empirical data.

Warning: some tools to calculate exponent rely on self-affinity and
are unable to distinguish between fBm and Lévy flight. They will
return exponent which could be either H or 1/α.
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2 Lévy flight

Like standard Brownian motion but with overabundance of very
large jumps.
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α = 1.3

If distribution of increments r(t) = x(t) − x(t − ∆) with stepsize
∆ denoted by p(r) then tails of distribution decay as a power law :

p(r) ∼
1

|r|α+1
as |r| → ∞ (1)

for 0 < α < 2. (For α = 2 tails are Gaussian.)

Can use this property to recover α from dataset.
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Easier to work with cumulative distributions C±(r),

C± + (r) =
∫∞

r p(r′)dr′ = prob. sample > r (2)

C−(r) =
∫ r

−∞ p(r′)dr′ = prob. sample < r. (3)

Then

C±(r) ∼
1

|r|α
as |r| → ∞. (4)

Want to fit this distribution to empirical data. But first...

Power-law tails mean variance diverges. Cannot be true for finite
dataset.

Since variance finite, should obey Central Limit Theorem on largest
scales. Find good fitting function is [1, 2]

logC±(r) = −α log |r| − β |r| + γ, (5)
because fit is linear in parameters (α, β, γ).

Effect of finite system size is to truncate power law tail by an ex-
ponential cut-off at rc ∼ 1/β. Well established, empirically.
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2.1 Data analysis: Zipf plot

Good choice because the Zipf plot method will not be tricked by
other self-affine signals, like fBm (since it shuffles the data).

Recipe

1. Rank order increments r.
2. (Transposed) Zipf plot: Rank versus r.
3. Fit Eq. (5) to data.
4. Interpret results.

Comments

Rank order (sort) increments in both increasing/decreasing orders
(to analyze both tails). Ranki ≈ NC(ri) for each tail.

Reasonable choice for uncertainty in log(Rank) is

σi =

√

N − Ranki
N · Ranki

, (6)

from binomial distribution. (Not certain if this improves fit.)

Only want to fit over tail. Start at 2 std. devs., Ranklo = 2.5%N ,
then increase lower bound of fit, lo, to minimize reduced chi-squared
statistic.
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Interpreting results

Must have 0 < α < 2 [3].

Power law (straight line on log-log graph) must hold over at least
one order of magnitude to be significant,

OM = log10
min(rhi, rc)

rlo
> 1. (7)

If either condition fails then Lévy tail not significant so take α ≡ 2
(Gaussian).

2.2 Test: Synthetic Lévy series

Synthesized timeseries of N = 100, 000 datapoints for
αin = 0.1, 0.2, . . . , 2.0.
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αin = 1.9, negative tail, αout = 2.0, OM= 0.5
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So one out of 40 tails is mis-characterized: for αin = 1.9 found
OM< 1 so could not confirm Lévy tail. Need very large datasets to
distinguish α near 2 from Gaussian.

Also tested synthetic fBm series—always returned OM< 1 indicat-
ing no Lévy tail.
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3 Fractional Brownian motion
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Fractal dimension, D = 2−H, is space filled by signal.

Correlations extend over entire history of series.
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3.1 Diffusion

Standard Brownian motion, or random walk, diffuses as σ ∼ t1/2.
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In general, fBm diffuses as σH ∼ tH. (H > 1/2 ⇒ superdiffusion,
H < 1/2 ⇒ subdiffusion.) Can use this to estimate H from
dataset.

3.2 Data analysis: Dispersion

Methods not to use (and why):

• Rescaled range (Hurst, R/S): strong bias H → 0.7.
• Scaled window variance/detrended fluctuation: tricked by Lévy

flight.
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• Autocorrelation: only for persistent series H > 1/2. (Might
hold for antipersistent series but would need huge datasets,
eg. 106 − 109 points.)

Dispersional analysis will not confuse Lévy flight with fBm and works
for all 0 < H < 1 with moderately sized datasets.

Slight bias if H > 0.9. (Underestimates H.)

Recipe

1. Get increments r.
2. Dispersional analysis.
3. Fit curve.
4. Interpret results.

Comments

As before, work with the increments ri, called fractional Gaussian
noise (fGn).

Again, need N > 1, 000 data points. Prefer N > 10, 000.

Dispersional analysis

Start with bin size L = 1.
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Estimate of diffusion on scale L is given by

σ(L) ∼
√

Var [r]. (8)

Plot deviation, σ(L) versus bin size L on log-log scale.

Double bin size L→ 2L and compute increment r over new L,

ri = r2i−1 + r2i. (9)

Repeat.

Interpreting results

On log-log scale should have linear relationship

log σ(L) = H logL + C (10)

where slope is Hurst exponent H.

In practice, finite data series means memory finite so best to skip
last five datapoints when fitting.

Series might be multifractal, with distinct H values on different
L-scales.

If concerned H may be due to artifacts, shuffle data to break cor-
relations and reanalyze. Should get H ≈ 1/2.
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3.3 Test: Synthetic fBm series

Synthesized timeseries of N = 100, 000 datapoints for
H = 0.05, 0.10, . . . , 0.95.

Compare fitted Hout to input Hin.
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Also tested synthetic Lévy flight series. Returned H = 0.49 . . . 0.51
for all α.
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4 Empirical examples

4.1 Swiss Franc versus U.S. Dollar exchange

rate

Tickwise data [4] sampled at 1 minute intervals. N = 99, 985.

Price is multiplicative process so convert to log-price before pro-
cessing. (Brownian motions are additive.)
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Zipf plot: + tail, α = 1.85± 0.02, OM= 1.1

Zipf plot: − tail, α = 1.75± 0.01, OM= 1.4
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Zipf plot: + tail, α = 1.85± 0.02, OM= 1.1

Zipf plot: − tail, α = 1.75± 0.01, OM= 1.4

Evidence of a stable Lévy distribution with exponent α ≈ 1.8.
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Dispersion: H = 0.50± 0.02

No memory in price/return history.

Volatility

However, consider squared returns r2, known as volatility(?) [5, 6].
Measures how much price is fluctuating without regard for direction
of movements.
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Multifractal

H = 0.51± 0.01
H = 0.70± 0.03

No memory on short timescales but crosses over to positively cor-
related volatility for timescales > 300 minutes.

Not an artifact of Lévy distribution—synthetic series maintained
H ≈ 1/2 when squared.

In summary, series exhibits fat tails with Lévy exponent α ≈ 1.8,
no memory in returns, but persistence in volatility (H = 0.7) for
timescales longer than ∼5 hrs.
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4.2 Vancouver precipitation

Hourly precipitation at Vancouver International Airport, 1960–1999.
N = 335, 273.
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Bounded below by zero so only expect possible Lévy distribution for
positive tail:
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Zipf plot: + tail, α = 1.78± 0.03, OM= 0

OM< 1 so does not appear to be Lévy (despite α < 2).
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Dispersional analysis:
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YVR hourly precipitation
H = 0.72± 0.02

Precipitation has a long (∼ 1/2 year) memory. Can confirm this by
shuffling data and repeating analysis. Gives H ≈ 1/2 so effect is
due to correlations.
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