
Unanticipated Reuse of Large-Scale Software Features

Reid Holmes
Department of Computer Science

University of Calgary
2500 University Dr. NW

Calgary AB Canada T2N 1N4

rtholmes@cpsc.ucalgary.ca

ABSTRACT
Software reuse has been endorsed as a way to reduce de-
velopment times and costs while increasing software qual-
ity and reliability. Techniques designed to encourage soft-
ware reuse have concentrated on creating reusable software
in the form of frameworks, reuse repositories, and compo-
nent libraries. These approaches do not help a developer
who wants to leverage, from an existing system, a complex
feature that was not designed to be reusable. We propose
an approach that allows developers to investigate the reuse
potential of a feature within an existing system, to create
a plan for reusing the feature, and to support the transfor-
mation of the feature to the developer’s project. We believe
that by providing explicit support for the reuse of large-scale
source code features, the reuse process—and its benefits—
can be made accessible to developers.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]: Program Editors;
D.2.13 [Reusable Software]: Reuse Models

General Terms
Languages

Keywords
Reuse, software structure, software feature, integrated de-
velopment environment.

1. INTRODUCTION
Software reuse remains difficult to achieve in unantici-

pated scenarios [7]. While a system is being developed, de-
signers may identify subsets of features that are likely to
change or be added in the future; however, their focus is
generally inward-looking. That is, they are concerned about
how the product they are creating may change, not how fu-
ture developers may want to reuse their system. The cost of

Copyright is held by the author/owner.
ICSE’06,May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

building software is high enough [1] without designers trying
to account for external reuse scenarios. Even though a sys-
tem may not be designed for external reuse, features within
the system can be valuable to other developers who require
similar pieces of functionality within their own projects.

The steps that a developer must go through to evaluate
an existing software feature for reuse are complex. First,
they must explore the source code for the feature they are
interested in and determine its boundaries within its sys-
tem. Second, they need to investigate each of the feature’s
dependencies within its system to identify the environment
the feature requires. Third, they need to determine how
each of these dependencies should be managed when the fea-
ture is reused in their project. Fourth, they need to adapt
the feature’s source code, and its dependencies, so it will
work within their project. This largely manual process en-
tails that the developer track each dependency, how it is
to be handled, and how it should be integrated into their
project. For large features the developer needs to account
for an overwhelming amount of information in order to suc-
cessfully complete the reuse task.

Previous research has provided several ways to describe
features within systems [9, 13]. Other research has con-
sidered how to identify reusable source code [2, 5]. These
approaches are not designed to help the developer reuse the
features they have identified. Source-to-source transforma-
tion research has concentrated on how to transform source
from one context to another [14], not how to locate the code
to be transformed. While each of these research projects ad-
dresses an aspect of what the developer is trying to accom-
plish while reusing a feature, none provides a comprehensive
approach that enables the reuse process.

In contrast, we propose a system by which a developer can
navigate an abstract representation of a system to sketch the
boundaries of a feature. Through an iterative process the
developer then determines how the feature’s dependencies
should be managed. This augmented sketch then becomes a
reuse plan, that we can use to extract the feature and trans-
form it to the developer’s current project. Our approach
provides developers with intuitive techniques to manage, to
evaluate, and to act upon the volumes of information re-
quired to successfully complete large-scale reuse tasks.

Our approach is detailed in Section 2. Related research is
examined in Section 3. How we will develop and evaluate it
is addressed in Section 4.



2. THE APPROACH
How our approach helps developers reuse features is il-

lustrated in Figure 1. First the developer needs to deter-
mine which feature they are building that they want to reuse
from another project. Next, they need to locate an existing
project that provides the feature they require. The devel-
oper then chooses a location in the project that is relevant to
the feature. From that location our tool provides an initial
sketch of the feature that the developer can start exploring
from. The developer navigates the feature using an abstract
visual graph representation, traversing the feature’s depen-
dencies and sketching out its boundaries (Section 2.1). The
developer then determines how each of the feature’s depen-
dencies are relevant to the functionality they wish to reuse
and annotates them accordingly (Section 2.1.2). As the
developer traverses the feature’s dependencies our system
recommends artifacts that are both structurally significant
and relevant based on the developer’s past decisions (Section
2.1.1). The developer can then use our tool to extract and
transform the feature’s source code to their project based
on this plan (Section 2.2).

& treatment of dependencies
Refine feature extent

of feature
Estimate extent

Locate project

Determine needs

reuse plan
Automated use of

continuing
Decide against

SUPPORT
PROPOSED

Figure 1: How the tool is used

Our approach does not force the developer to follow a
rigid process to plan their reuse task. At any time, they are
able to iterate on their previous decisions to converge on a
solution that meets their needs.

2.1 Feature Sketching
The purpose of the sketching process is to formulate a

comprehensive feature reuse plan. While sketching the fea-
ture the developer is trying to (a) delineate the boundaries
of the feature, (b) determine how each of its dependencies
should be handled, and (c) judge whether the reuse task is
feasible.

Our approach enables developers to explore a graph-based
representation of a feature. Each node in the graph repre-
sents a code fragment (a field, method, class, or package)
and each edge represents structural dependencies between
the nodes. The nodes and edges are statically-determined
by analyzing the structural dependencies within the source
code. The developer begins from an initial starting point
that they are interested in for the feature (such as a class,
method, method call, field reference or combination thereof)
and interactively builds up the feature sketch. As the devel-
oper navigates through the dependencies in the graph our
system ensures they are not overwhelmed with every possi-

ble dependency between one node and the next; based on
the nodes the developer has investigated and annotated in
the past, the graph is updated to only display dependencies
the developer needs to make decisions about. For instance,
if the developer discovers that the feature they are investi-
gating uses the Java AWT, and their project uses the same
widget kit, they can choose to accept all java.awt.* depen-
dencies and have them elided from the graph in the future
as they know these dependencies will be provided by their
system.

By working within an abstraction of the feature, the devel-
oper is able to maintain a global overview of the feature, and
what it requires, without having to maintain a mental model
while jumping between various files. The low-cost nature of
the exploratory process is critical to allow the developer to
freely and quickly investigate alternate paths through the
graph so they can iteratively converge on a sketch of the fea-
ture that meets their needs. The developer can make both
aggregate and fine-grained decisions (including method call,
field reference, method, field, class, and package level); this
helps to reduce the scope of the dependencies they need to
consider without losing the overall perspective of the feature.

2.1.1 Dependency Recommendation
To further scale our approach and help developers reuse

large-scale features, the system will not only display depen-
dencies for the developer but will also make recommenda-
tions about specific dependencies to them. The intent of
these recommendations is to identify dependencies within
the feature that have high reuse costs while hiding those
dependencies that have low cost. Using these suggestions,
developers can make more informed decisions, as they know
more about the potential cost of each dependency; this will
help them investigate more complex features, as they will
not lose sight of the overall feature amid a myriad of details.

For example, for one feature of interest to us that we infor-
mally investigated we found that 90% of the 2700 dependen-
cies involved in the reuse of the feature could be eliminated
by removing a single dependency from the sketch. These
high-cost dependencies are the ones that we want to bring
to the developer’s attention.

2.1.2 Feature Annotation
As the developer navigates their feature sketch, there are

various decisions they can make about each of the nodes
(Table 1) and dependencies (Table 2) that they encounter.
The developer can quickly annotate each entity using single
keystroke commands, creating a “visual bread crumb” trail
revealing trends in the decisions they have already made.
Significantly though, our approach leverages these annota-
tions to drive the feature reuse process (Section 2.2).

As the developer annotates the graph they get a quick
visual overview of the scope of the reuse task. The number of
nodes marked as reuse indicates the size of the feature to be
reused; the number of dependencies marked as reimplement
indicates new code the developer needs to write in their
system to support the feature; while mapped dependencies
can be quickly modified to match the APIs in the developer’s
system. Nodes that are marked reject are not considered
part of the feature. If the developer needs to see additional
details before annotating a dependency they can view the
source code that corresponds to the dependency in a view
below the feature sketch.



After the developer has created their feature sketch and
annotated it, they are left with a reuse plan. The plan de-
scribes the feature and how it should be reused in detail.
They can then evaluate this plan to determine whether they
should proceed with the reuse process, re-examine their an-
notations and update the plan, or abandon the reuse of the
feature altogether.

Action Description
Reuse Migrate source code to new system
Reject Not a part of the feature to be reused

Table 1: Node actions

Action Description
Preserve Already provided by the system
Reimplement Must be implemented by the system
Map Can be mapped to another API within

the system that provides the same func-
tionality

Table 2: Dependency resolution actions

2.2 Feature Extraction and Integration
Our tool can use the developer’s reuse plan to automat-

ically proceed with the reuse task. Nodes in the plan that
are marked reuse are migrated to the new system. The de-
pendencies on these nodes that are marked preserve should
compile without modification within the new system. The
tool helps the developer work through each of the map de-
pendencies and assist them in creating maps from the fea-
ture’s original dependency to new dependencies within the
developer’s project. Stub classes and methods are created
for the developer to implement for those dependencies that
are marked for reimplementation. After the developer im-
plements the code for these stubs, the reuse task is complete.

2.3 Scenario
A small example demonstrating a quick reuse plan repre-

senting a status line feature is given in Figure 2. The oval
nodes represent methods, the rectangular nodes are pack-
ages, and the edges between them show structural depen-
dencies. This plan was created in less than five minutes
and includes many of the salient attributes of the feature.
Manually navigating through the source code would have in-
volved many searches and switches between various source
files. While using our tool, the developer was able to main-
tain their context as they quickly explored the feature. The
developer has indicated that they will preserve dependencies
(dashed lines) on org.eclipse.swt.* and java.lang.*, as
these packages are already used in their project. The devel-
oper’s project already contains a class providing functional-
ity to manage the status line so StatusLineManager is re-
mapped (dotted lines) to the existing class. The developer
has also opted to reuse (solid lines) StatusLine with the ex-
ception of StatusLine.trim() which they will re-implement
(double lines). They will also implement the colour func-
tionality provided by JFaceColors. From this sketch they
can quickly see that they will only have to reimplement two
methods, three methods will be copied automatically, and
two methods can be re-mapped to their own implementa-

tions, and all of the dependencies on two high-level packages
do not need to be modified.

StatusLineManager.setMessage(..)

Root Concern

StatusLine.setMessage(..)

StatusLine.setMessage(..)

StatusLine.updateMessageLabel(..)

JFaceColors.getErrorText(..)

StatusLine.trim(..)

StatusLineManager.statusLineExists(..)

java.lang.* org.eclipse.swt.*

Figure 2: Simple feature reuse plan

3. RELATED WORK
Several approaches have been presented to help developers

investigate, model, and reuse source code. Due to the nature
of this paper, only a brief synopsis of relevant work will be
presented.

Two notable reuse projects include CARE [2] and flow
graph program slicing [10]. While both approaches locate
features in source code (CARE uses a metrics approach as
opposed to program slicing) neither approach assists the de-
veloper in reasoning about, or reusing the located feature.
Additionally, while these approaches aim to provide reusable
features to developers, it does not let them choose the scope
of the feature to be reused.

The graph metaphor has been employed by past systems
as a basis for program understanding activities [15, 4]. Nav-
igating graphs to locate portions of a system relevant to
a specific feature has also been evaluated [4]. These tech-
niques have not been applied to feature reuse tasks. The
reflexion model approach allows the developer to iteratively
compare their mental model for the structure of a system
against what is actually realized in the source code [11].
This approach is similar to ours in the manner in which the
developer is encouraged to think, but reflexion models are
not designed to help developers reuse features.

Robillard has extended his original research on concern
mapping [13] to include the automatic recommendation of
program elements [12]. This work demonstrates that rea-
sonable recommendations can be provided to a developer in
an iterative semi-automated environment. Several systems
exist that recommend source code to be reused from within
a repository of code. Both Strathcona [8] and CodeBro-
ker [16] return example code that can be copied by a devel-
oper. These approaches both work with code that wasn’t
designed for reuse, but are only applicable for very small
features, as the examples they return cannot be further ex-
plored.

The Implicit Context approach developed by Walker and
Murphy [14] describes a method to transform a source code
artifact from the context in which it was developed to a



new, different context but this work does not provide any
means to help a developer identify and isolate features to be
transformed.

We will build upon much of this prior research as we de-
velop the tools to implement our approach.

4. METHOD AND EVALUATION
Our approach consists of four major components.
The first extracts the static structure of the software for to

be considered for reuse. This builds upon our existing work
with the Strathcona Example Recommendation System [8].

The second component handles feature sketching and an-
notation. This will be implemented from scratch using
lessons learned through prior research [15, 4]. We will avoid
tangential research into graph layout and edge routing prob-
lems.

The third is the dependency recommender which will be
an application of Robillard’s concern detection tool [12].
Once these first three components have been built, we will
perform a comprehensive case study. The purpose of this
case study will be to answer three key questions: (a) can
developers use our tool to navigate a feature and annotate
it easily; (b) do our dependency recommendations improve
the scalability of the tool and reduce developer workload;
and (c) can the resultant reuse plan be used to make valid
decisions about the difficulty of the reuse task.

The fourth component provides the feature transforma-
tion functionality of our approach. We will build upon ICon-
JDT [3] specifically for the mapping portions of the trans-
formations.

Evaluation for our approach is complicated by the fact
that skilled developers are required to perform complex fea-
ture reuse tasks. We will compare developer performance for
carrying out a reuse task using three treatments: implement-
ing the feature from scratch, manually reusing a feature,
and using our approach to reuse the feature. We will moni-
tor several aspects of the developer’s performance on these
tasks to try to identify the relative difficulty in employing
each treatment. Additionally, through our partnership with
IBM Ottawa Software Lab we will perform a case study to
determine whether our approach can help industrial develop-
ers successfully perform reuse tasks on large-scale systems.

4.1 Status
We have begun developing the sketching framework and

are performing preliminary analysis to see if our abstract
representation sufficiently describes the feature to enable the
developer to make informed decisions.

5. CONCLUSION
We have described an approach to help developers reuse

complex source code features that were not designed for
reuse. While existing techniques have looked at various as-
pects of this problem, we propose an approach that assists
developers through the whole process from the initial stages
of investigating a feature through creating a comprehensive
reuse plan and finally migrating the feature to within their
system. This approach relies on light-weight graphical ab-
stractions and utilizes a system of heuristics to recommend
important artifacts to the developer in order to increase scal-
ability. Ultimately, using the reuse plan created by the de-
veloper, our tool transforms the feature from its existing sys-

tem into the developer’s project. By supporting developers
in this way we hope to increase the adoption of unantici-
pated source-code reuse within development projects.

6. REFERENCES
[1] V. Basili, G. Caldiera, F. McGarry, R. Pajerski,

G. Page, and S. Waligora. The software engineering
laboratory: an operational software experience factory.
In Proc. Int’l Conf. Softw. Eng., pages 370–381, 1992.

[2] G. Caldiera and V. R. Basili. Identifying and
qualifying reusable software components. Computer,
24(2):61–70, 1991.

[3] J. J. C. Chang and R. J. Walker. Incomplete resolution
of references in eclipse. In Proc. Eclipse Technology
eXchange Workshop Conf. at OOPSLA, 2005.

[4] K. Chen and V. Rajlich. Case study of feature
location using dependence graph. In Proc. Int’l
Workshop Progr. Comprehension, page 241, 2000.

[5] W. Dai. Development of reusable expert system
components: preliminary experience. In Proc. Symp.
Softw. Reusability, pages 238–246, 1995.

[6] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE Trans. Softw. Eng.,
29(3):210–224, 2003.

[7] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
mismatch: Why reuse is so hard. IEEE Softw.,
12(6):17–26, 1995.

[8] R. Holmes and G. C. Murphy. Using structural
context to recommend source code examples. In Proc.
Int’l Conf. Softw. Eng., pages 117–125, 2005.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Progr.
Lang. Syst., 12(1):26–60, 1990.

[10] F. Lanubile and G. Visaggio. Extracting reusable
functions by flow graph-based program slicing. IEEE
Trans. Softw. Eng., 23(4):246–259, 1997.

[11] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: bridging the gap between source and
high-level models. In Proc. ACM SIGSOFT Int’l
Symp. Foundations Softw. Eng., pages 18–28, 1995.

[12] M. P. Robillard. Automatic generation of suggestions
for program investigation. In Proc. Europ. Softw. Eng.
Conf./ACM SIGSOFT Int’l Symp. Foundations Softw.
Eng., pages 11–20.

[13] M. P. Robillard and G. C. Murphy. Concern graphs:
finding and describing concerns using structural
program dependencies. In Proc. Int’l Conf. Softw.
Eng., pages 406–416.

[14] R. J. Walker and G. C. Murphy. Implicit context:
easing software evolution and reuse. In Proc. ACM
SIGSOFT Int’l Symp. Foundations Softw. Eng., pages
69–78, 2000.

[15] J. Wu and M.-A. D. Storey. A multi-perspective
software visualization environment. In Proc. Conf.
IBM Centres for Advanced Studies on Collaborative
Research, page 15, 2000.

[16] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In Proc.
Int’l Conf. Softw. Eng., pages 513–523, 2002.


