
Impact of Methodological Choices on the Analysis of Code Metrics
and Maintenance
Syed Ishtiaque Ahmada, Shaiful Chowdhuryb and Reid Holmesa

aDepartment of Computer Science, University of British Columbia, Vancouver, Canada
bDepartment of Computer Science, University of Manitoba, Winnipeg, Canada

A R T I C L E I N F O

Keywords:
Software evolution
Change-proneness
Bug-proneness
Empirical studies
Software data science
Code metrics

A B S T R A C T

Many statistical analyses and prediction models rely on past data about how a system evolves to learn
and anticipate the number of changes and bugs it will have in the future. As a software engineer
or data scientist creates these models, they need to make several methodological choices such as
deciding on size measurements, whether size should be controlled, from what time range metrics
should be obtained, etc. In this work, we demonstrate how different methodological decisions can
cause practitioners to reach conclusions that are significantly and meaningfully different. For example,
when measuring SLOC from evolving source code of a method, one could decide to use the initial,
median, average, final, or a per-change measure of method size. These decisions matter; for instance,
some prior studies observed better performance of code metrics for bug prediction in general, while
other studies found negative results when performance was evaluated through a time-based approach.
Understanding the impact of these different methodological decisions is especially important given
the increasing significance of approaches that use these large datasets for software analysis tasks.
This paper can impact both practitioners and researchers by helping them understand which of the
methodological choices underpinning their analyses are important, and which are not; this can lead to
more consistency among research studies and improved decision-making for deployed analyses.

1. Introduction
Software maintenance is a challenging [1] and costly

task [2] and researchers are investigating ways to reduce
this cost by understanding the correlations between dif-
ferent indicators and maintenance cost and by building
predictive models [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. These
analyses and models generally focus on identifying the
highly maintenance-prone components such as change-
[13, 14, 15] and bug-prone [16, 17, 18] source code com-
ponents. Researchers have investigated static code metrics
(e.g., McCabe [19], C&K [20]), process metrics (e.g., code
churn [21], change burstiness [22], number of develop-
ers [23]), and combinations of metrics [24, 25] as these
are often associated with bug and change proneness. Un-
fortunately, there have been disagreements among research
communities related to the true effectiveness of these met-
rics [26, 27, 28].

While some studies argue that code metrics are better
for predicting pre-release bugs [29, 30], others claim metrics
perform well for post-release [31] as well. Different stud-
ies have also had disagreements at different granularities
(e.g., module-level [29, 32, 33, 34] vs. method-level [35]),
or using different aggregation schemes (e.g., mean vs. en-
tropy [36]). What are the causes of these disagreements? Are
observations about code metrics and maintenance impacted
by different ways a metric can be measured (e.g., SLOC
measurement) or by other factors such as the time frame from
which metrics are obtained or by the way data is aggregated
across projects?

siahmad@cs.ubc.ca (S.I. Ahmad); shaiful.chowdhury@umanitoba.ca
(S. Chowdhury); rtholmes@cs.ubc.ca (R. Holmes)

ORCID(s): 0000-0003-4213-494X (R. Holmes)

Creating useful, high-quality predictive models requires
strong methodological rigor to avoid inconsistent or mis-
leading predictions. In this work, we explore several of
the key methodological decisions made by researchers and
practitioners as they design their data analysis pipelines
for software evolution analyses. Specifically, based on con-
tradictions reported by prior work (e.g., [37, 38, 18, 27,
39, 26]), we examine the impact of five common method-
ological choices on the relationship between code metrics
and maintenance. These five choices must be made when
designing predictive maintenance models. These decisions
relate to size measures, size normalization, timeframe selec-
tion, change analysis, and result aggregation schemes which
impact change and bug proneness prediction models. Our
analysis reveals that these choices can lead to substantially
different results, and explain some of the previous contra-
dictory findings from prior software maintenance prediction
efforts.

We performed an analysis of these methodological deci-
sions at the method level granularity. This granularity was
chosen because method level granularity is commonly de-
sired by the research community [35, 40] and industrial de-
velopers [41]. To do this, we extracted the complete method
level history of 1,598,592 Java methods from 53 open-source
projects. To the best of our knowledge, our analysis of these
large number of projects and methods itself is very unique
when compared to other similar prior studies (e.g., [35, 42,
40, 38, 43]). With this significantly large dataset, we then
examined the impact of the most commonly used variations
of five different methodological choices on the relationship
between code metrics and maintenance.

The main contribution of this paper is a demonstra-
tion of the impact that different methodological decisions,

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 1 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

commonly used in data collection and analysis of software
evolution data, can have on the concrete findings that would
be derived from these data. We show how these decisions
explain many contradictions present in prior work so future
analyses and deployments of these models can be better
designed and interpreted. Our observations are particularly
important for researchers and practitioners, leveraging the
vast trove of historical data available from past system
evolution, so they can conduct statistical analysis and build
their models using high-quality data to make accurate and
meaningful conclusions and predictions. To aid in a more
accurate analysis of code metrics and maintenance, we pro-
vide a set of recommendations that future studies can follow.

To enable replication and extension, we share our dataset
publicly.1

1.1. Paper Organization
In Section 2, we begin by explaining the rationale behind

choosing size as the representative metric for code metrics
and the decision to conduct our analysis at the method-level
code granularity. Following this, we outline the motivations
for the five research questions we selected, which correspond
to the five methodological choices we made. Section 3 de-
scribes the methodology of this paper. Results and analysis
of the five research questions are presented in Section 4.
Section 5 presents the recommendations we make along with
the threats that can impact our results. We discuss the related
works in Section 6. Section 7 concludes this paper.

2. Background and Research Questions
Given the expense associated with software mainte-

nance, engineers and researchers have long sought to predict
future software evolution trends in a bid to reduce the num-
ber of future bugs and decrease future maintenance costs.
These predictions typically use historical data, either about
the system under analysis or other prior systems, to identify
code units or changes that could be prone to future changes.
Future changes are typically used as a proxy for both the
expensive tasks of fixing bugs and evolving existing source
code. Two of the most common kinds of software evolution
predictions are change-proneness and bug-proneness; these
models share similar methodological steps, as would any
analysis that takes past historical project data as input.

Given a desired analysis unit granularity (usually a sub-
system, file, or method) from one or more projects, all
practitioners wishing to perform change- or bug-proneness
predictions need to make some common methodological
choices to build their analysis pipelines. Based on our ob-
servations from prior studies (e.g., [42, 40, 44, 45, 46, 26,
47, 48, 49, 50, 51, 52]), we identified the five most common
choices where the variation of these choices may lead to con-
tradictory findings. In this work, we investigate each of these
five choices. In our analysis procedure, we fix our granularity
unit to the method level, for a total of 1,598,592 methods
from the historical evolution of 53 projects, and use SLOC

1https://zenodo.org/records/12905296

(source lines of code without comments and blank lines, also
known as size) as the selected code metric as it is widely used
in both industrial and research settings.

2.1. Code Metrics for Evolution
Previous work examined several code metrics to predict

bug and change proneness. However, the researchers could
not establish a common ground on the usefulness of code
metrics [26, 27, 28, 44]. Some studies found favourable
outcomes for code metrics [38, 37, 53, 54, 18, 55], while
others discovered negative results [35, 27, 39]. Some argue
that process metrics [56, 57] perform better than static
code metrics [58, 31] for fault prediction in highly iterative
post-release software systems, while others found that the
combination of process and static code metrics perform well
in terms of accuracy [49]. Despite the continuous debate
about code metrics, previous studies unanimously agree
that size is the effective code metric to estimate software
maintenance [26, 59, 60, 61]. Therefore, we use size (or
SLOC) as the selected code metric to understand how differ-
ent methodological choices can impact the analysis of code
metrics and maintenance.

2.2. Code Granularity
The relationship between code metrics and software

maintenance can be analyzed at different levels of source
code granularity: module/component level [29, 50], class/file
level [26, 62, 59, 63, 52], method level [42, 45, 61, 40], and
line level [64]. Unfortunately, practitioners find it difficult
to work with coarse granularity levels, such as module and
class levels [42, 41, 65]. For example, it is difficult to find a
bug from a class, as a class can often be more than 500 or
1000 (sometimes even more than 5000) lines of code [66].
Also, research has found that only a fraction of methods in
a class are actually bug-prone [45]. Line-level maintenance
analyses, on the other hand, are often difficult and infeasible.
For example, in this study, we will need to collect the change
history of different code components, which is easy at the
file/class or method level, but difficult at the line level.
Line level change history suffers from many false positives
and false negatives because many lines are similar just by
chance [41, 67, 68].

Considering these factors, method-level maintenance
analysis has gained traction in the recent past, and rightly
so [69, 41, 61, 42, 45, 40, 44]. Following the recent studies,
we also focus on size at the method-level granularity to
understand its varied impact on maintenance based on the
methodological choices a researcher or a practitioner can
make.

2.3. The Five Methodological Choices
We now discuss the five methodological choices that

may impact the analysis of code metrics and maintenance.
As we describe next, we found these methodological choices
emerged frequently in software maintenance studies.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 2 of 21

https://zenodo.org/records/12905296


Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

2.3.1. (RQ1) Size measurement
Let us consider a scenario where a researcher aims to find

what types of source code methods are maintenance-prone.
More specifically, the researcher is interested in finding if
there are patterns in code metrics distributions that make
a source code method more or less maintenance-prone.
The researcher, for example, can group highly change- and
bug-prone methods in one bucket, and the less change-
and bug-prone methods into another bucket. Distributions
of different code metrics between these two buckets can
then be compared. If significantly different distributions are
observed, practitioners can be advised about the patterns of
maintainable source code methods (e.g., about the maintain-
able method size [61]). The question is, what code metric
value of a method should be considered while performing
this analysis? This is important because, with the evolution
of a source method, its code metrics’ values can change
(sometimes very significantly) [70, 44].

In our dataset, there is a method processFiltered from
the checkstyle2 project which has been revised 73 times.
This method was also involved with bug-fix commits seven
times. This is definitely a highly maintenance-prone method.
The initial size of this method was 31 (a medium-sized
method [61]). After much evolution, the size became 108
(a very large-sized very high-risk method [61]), and after
refactoring and optimization, the size finally became only 22
(a small-sized low-risk method [61]). Now, to learn the code
metrics patterns of these types of methods, which code met-
ric value (i.e., size value) should represent this method? The
first value (31), the last value (22), the largest value (108), the
mean (55), the median (44), the mode (39), or the version-
specific value (described later) proposed by Chowdhury et
al [44, 61]? We provide details about calculating the version-
specific values in Section 3.5.3.

We found that many prior relevant studies had to make
this decision (which metric value to use) while analyzing
maintenance or developing maintenance prediction models
(e.g., [71, 45, 44, 72, 46, 15]). For example, to calculate the
code metrics of classes and interfaces, Romano et al. [71]
considered the current code version from the versioning
repositories. This means, the authors considered the last
code metric value of an evolved class or interface (or the first
value for the class or interface that was not evolved after their
introduction).

While all these measurements can be rationally selected
by individual studies, can these variations in code metric
measurement approaches explain the contradictory findings
in earlier studies about the relationship between code met-
rics and maintenance (RQ1)?

2.3.2. (RQ2) Size normalization for bug and change
analysis

The research community almost unanimously agrees that
a larger code component is more likely to have more code
smells, and thus, is more maintenance prone [42, 69, 61,
46, 26, 73]. Chowdhury et al. [69, 61] found that larger Java

2https://github.com/checkstyle/checkstyle

methods go through more revisions and more bug fixes than
smaller methods. Khomh et al. [46] claimed that size and
structural changes are connected to anti-patterns of classes,
and classes containing anti-patterns are more maintenance-
prone. Gil et al. [26] found that size is the most influential
of all code metrics while explaining software maintenance
efforts. According to Gil et al., size is the only useful
code metric to understand software maintenance, because
all other code metrics become useless when their correlation
with size is normalized. This observation was also common
in many other prior studies [59, 60, 74]. The conclusion
of these studies is simple: the larger the size, the more
change- and bug-prone a code component is. This implies
that practitioners should spend more time on large code
components for maintenance-related tasks.

In contrast to the previously mentioned studies, a very
different conclusion was made by Olbrich et al. [75]. The
authors found that large classes (e.g., God and Brain classes)
are less maintenance-prone if change frequency and bug rate
are calculated with normalized SLOC (i.e., per line of code).
This, to some extent surprising, results were also found in the
study of Yamashita et al. [76].

Considering these somewhat contradictory findings,
should practitioners focus on larger code components while
focusing on change- and bug-proneness, and smaller code
components while focusing on change and bug-density? In
other words, is size correlated positively with total change
and bugs, but negatively with change and bug per line of
code? This is what we want to confirm with our large and
robust dataset at the method-level source code granularity
(RQ2).

2.3.3. (RQ3) Age normalization and timeframe
selection

A common potential problem with earlier code metrics-
related work was ignoring the impact of the age of a code
component (module, class, method, etc.) while analyzing
its maintainability. Generally, researchers take a particu-
lar project snapshot to retrieve the source code and then
to measure different code metrics of different code com-
ponents [75]. This can create both internal and external
threats to validity. For example, although a research study,
in general, would use one particular snapshot of a particular
project, the code components in that project can still be
of different ages: some were just introduced to the system,
while others have evolved for a long time [41]. Similarly,
even when the same set of software projects are used in dif-
ferent research studies, they do not necessarily use the same
projects’ snapshots. For example, the eclipse project was
used by the code smell study of Khomh et al. in 2012 [46]
and Palomba et al. in 2018 [73]—same project, but very
different project snapshots.

The age differences across different code components
can be problematic: from prior work, we know that different
chunks of data within one project could lead to different
prediction models [77], making just-in-time prediction mod-
els popular in recent times. A natural question is if two

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 3 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

code components have very similar code metric distribution
but very different ages, do they still have similar change-
and bug-proneness? What if, despite the similarly high code
complexity, the older code component has become less
maintenance-prone over time due to the different corrective
and perfective changes it has already gone through? If the
performance of code metrics can change significantly as a
particular code component ages [78, 69], can age be one of
the factors contributing to the contradictory findings about
code metrics in earlier studies [44, 26, 45, 42]?

We, therefore, investigate if age should be normalized
while analyzing code metrics’ effectiveness to understand
maintenance. If so, what timeframe explains the relationship
between code metrics and maintenance the most (RQ3)?

2.3.4. (RQ4) Change analysis
Prior studies vary in how they consider the change-

proneness of a code component. A common approach is to
consider the number of revisions of a class/file or method
as its change proneness [46, 55, 47, 44, 14]. As a result,
software quality reporting tools depend on the number of
revisions or commit frequency as a measure of change
hotspot [79, 80, 81]. However, commit patterns are depen-
dent on developers’ coding styles, expertise, and experi-
ence [82, 83]. This observation led some other studies to
use different change size metrics as the change-proneness
indicators including diff size [84, 85], new additions [85],
and edit distance [86, 39, 84].

Kawrykow and Robillard [87] analyzed the type of trans-
formations applied to methods and found that a large frac-
tion (15.5%) of method changes can be classified as non-
essential. They reported that most changes involve removing
or adding this keyword or are induced by rename refactoring.
Additionally, Ray et al. [88] observed that most changes in-
troduced by developers in multiple revisions are non-unique
(i.e., follow a specific repetitive pattern). Therefore, if we do
not account for the type of changes applied to a method, we
can produce inconsistent findings for code metric analysis.

In this work, we adopt the differentiation technique of
essential and non-essential changes by Kawrykow and Ro-
billard [87] to demonstrate the impact of different types
of changes at the method level. Intuitively, some changes
will have a greater evolutionary impact than others. For
example, changing a code comment is less likely to directly
introduce a future bug than modifying a key algorithm. We
therefore ask, can the sizes and types of the changes made
to a code unit produce contradictory results while analyzing
code metrics and maintenance (RQ4)?

2.3.5. (RQ5) Data aggregation
To analyze code metrics and maintenance, researchers

often rely on mining software repositories (MSR). Gener-
ally, a researcher selects a set of software project repositories
to mine data about changes and bugs and to extract source
code metrics. With this approach, a researcher has to select
one of the two approaches: aggregated analysis, and individ-
ual project analysis.

For example, to observe the relationship between size
and bug-proneness, a researcher can aggregate data from all
the projects [26, 42, 18, 73], and apply a statistical test to
produce one single value, such as Kendall’s 𝜏 correlation
coefficient or bug-prediction accuracy. Project aggregation
can hinder accurate analysis: external factors, such as code
review policy, developers’ commit habits, etc., can impact
different projects differently. For example, Gil et al. [28]
confirmed that code metrics distributions are often signifi-
cantly different across software projects, which are difficult
to normalize even after applying different transportation ap-
proaches [44]. Also, with project aggregation, the outcome
of any analysis can be significantly impacted by a few large
outlier projects.

An obvious alternative to aggregated analysis is to apply
individual project analysis [85, 89, 90, 71, 46], where
the outcome is presented for each project separately. This
can confirm if a particular observation (e.g., a high cor-
relation coefficient between cyclomatic complexity and
bug-proneness) is common across different projects. This
approach, however, can suffer from selection/publication
bias—one can select a particular set of projects (while ignor-
ing other projects) that support their publication need [91].
We ask, can the inaccurate application of aggregated or
individual project analysis be one of the reasons for previous
contradictory findings in code metrics and maintenance
analysis research (RQ5)?

3. Methodology
To accurately examine the impact of design alternatives

for the five methodological decision points, we collected a
corpora of method-level historical data to facilitate a deeper
analysis of how those methods evolved and what change-
proneness and bug-proneness approaches would have pre-
dicted for them.

3.1. Project Selection
Over the last decade, GitHub has gained popularity as a

rich source of open-source projects. In our work, we used the
SEART GitHub Search Tool [92] to identify candidate sys-
tems for analysis. Our search criteria included Java projects
(excluding forks), that have ≥ 1,000 commits, ≥ 200 stars,
and ≥ 30 contributors. Generally, the number of stars is
considered a proxy for popularity [93]. We only selected
Java projects as the number of bugs and metrics values varies
according to the programming language used [94, 95].

We then sorted the resulting system by repository file
size and manually filtered out systems less than 2,000 kilo-
bytes to try to remove toy projects from the 1,204 Java
projects. Finally, we applied purposive sampling [96] to se-
lect a wide range of actively maintained projects. We consid-
ered projects as actively maintained that release at least two
updates per year and merge a minimum of three pull requests
per month, demonstrating continuous integration of new
code contributions. Additionally, we require active commu-
nity engagement, including responding to issues within six
months of their creation and participating in discussions. To

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 4 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

verify this, we reviewed some latest open pull requests for
each of the 53 projects, ensuring that the response time from
the creation of the pull request was within six months. This
approach allows us to select projects that are both up-to-date
and well-maintained. These are the choices we made after
having a discussion among the authors.

We discarded unpopular projects (e.g., projects with
fewer stars and contributors) because we wanted to avoid
projects that were personal toy projects, as they don’t rep-
resent the complexity of real-world projects. Unpopular
projects may not go through proper maintenance and thus
their change-proneness and bug-proneness would automat-
ically be low. These projects can contain bugs and still
may seem harmless due to no bug-fixing activities. We
believe that our project selection approach mitigated the
perils of using GitHub repositories for software engineering
research [97].

The final set of 53 projects, presented in Table 1, had a
median age of 11 years and a median of 35, 207 changes.
We believe this diverse set of projects had enough change
history to have undergone sufficient historical changes to
observe temporal effects. Furthermore, the selected projects
had a large number of contributors (median 157) to capture
different developers’ coding styles, although for projects
with strict coding conventions this may be less of a concern.

The resulting 53 projects is a larger sample size than re-
lated method-level studies, which have used 13 [35], 21 [40]
and 20 [41] projects. Additionally, subsets of our selected
projects have also been used in previous studies [18, 98, 99].
The selected projects serve a diverse set of domains, includ-
ing code analysis (checkstyle), mocking libraries (mockito),
HTTP clients (okhttp), and JSON parsing (fastjson, gson).

3.2. Data Collection
We used CodeShovel [41] to extract the complete set of

change commits for a given source code method. CodeShovel
does this by walking backward through a project’s commit
history starting from the reference commit listed in Table 1.
It can detect cross-file changes (file move and file rename),
method signature changes (method rename, return type
change, exception changes, parameter changes, parameter
type changes), metadata changes (documentation and an-
notation changes), and method body changes. CodeShovel
has been shown to accurately uncover 97% of all method
changes. CodeShovel also collects meta-information about
each commit such as commit message, authors name, commit
SHA, and commit date. For each project, we extracted history
of all methods (including methods that were later removed)
by iterating backwards from the reference commit on the
main branch.

After using CodeShovel to extract the complete change
history for the 1,598,592 methods in our 53 project corpus,
we computed key metrics for each method at each revision
using a tool that we have implemented for this purpose.
The tool uses the javaparser3 library and parses the source
code of each method at each changed commit to compute

3https://github.com/javaparser/javaparser

required metrics. To sanity check our metrics calculations,
two authors randomly selected 1000 Java methods, finding
no inconsistencies in our expected values for each metric on
each method. We represented the change in metric value at
each commit for a given method as an array of metric values.

3.3. Dataset Description
The raw dataset contains 1,598,592 4 Java methods with

a total of 3,171,244 revisions. It contains meta information
of each method such as the author’s name, commit times-
tamp, commit message, and SHA. The dataset also includes
the actual source code, file path, and metric values that
reflect the state of the method at each commit. To facilitate
our research objectives, we extracted and structured the data
from the raw dataset in a systematic manner. Our resultant
dataset encompasses a collection of 53 JSON files, each
belonging to an individual Java project. Each JSON file
consists of a JSON object that includes a key representing
each method within a given repository. These keys serve as
unique method identifiers and allow us to link the data with
the bug and raw datasets.

The metric values for each commit are represented in
an array, where the first index always represents the state
when the method was first introduced into the repository.
For example, a method with SLOC (source lines of code)
values [10, 20, 30] had a SLOC value of 10 when it was
first introduced. The total length of the array (excluding the
introduction commit) represents the number of changes the
method underwent. The meta-information contained within
the dataset also includes details such as the authors respon-
sible for committing changes, the type of changes made,
and the diff sizes. The bug dataset, contained within the
repo-bug-data folder, similarly encompasses 53 JSON files,
each corresponding to a specific repository, and includes the
method ID to facilitate linking to the relevant dataset.

3.4. Maintenance Indicator Selection
This evaluation uses change-proneness and bug-proneness

as exemplar analyses against which different methodological
decisions can be evaluated.

3.4.1. Change-proneness
The number of revisions to a code unit has been used

widely by the research community as an indication of main-
tenance effort [85, 55, 100]. A common software design
idiom is that “code should be open to extension, but closed
to modification”. In terms of methods, this means that well-
designed methods should not need many revisions, as a given
method should mainly need to be changed to fix bugs, not
add new features. To measure the change-proneness of the
method we count the #Revisions, the total number of times
a method was changed regardless of the type of modification
applied. For RQ4, we also considered the nature (essen-
tial vs. non-essential) and size of changes in addition to
the #Revisions. The CodeShovel tool, for a given method,

41,598,592 Java methods refers to all the methods that were present in
a specific reference commit, except for those that were removed before that
commit

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 5 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

Table 1
Project details for 53 open-source projects sorted by #methods in descending order. The table also shows the popularity of each
project (e.g., number of stars, and contributors), in addition to the size of each project (e.g., number of files, and methods).

Repo Stars #Cont Ref. Commit Years #Methods #Files TtlSLOC TtlRevisions
sonarqube 5,937 137 39abd3de7 10.8 130,333 7,293 517,951 249,504
flink 16,764 908 6a8b03011 10.2 118,815 11,282 1,259,298 227,872
wildfly 2,593 343 a9e061675 10.9 112,098 10,081 616,780 153,071
hibernate-orm 4,678 420 cfc7b9725 13.6 95,135 10,260 779,669 179,706
spring-framework 43,641 544 42061d27b 12.3 90,138 7,512 696,598 243,270
docx4j 1,620 37 26aaa13fe 13.2 68,568 3,897 321,657 96,542
RxJava 44,922 278 82f489e1d 9.1 68,428 1,870 312,499 96,018
guava 41,775 264 eec5e6d76 11.7 66,468 1,979 377,142 68,277
soot 1,860 109 beb5a98be 24.4 66,256 3,684 391,457 103,727
jetty.project 3,160 159 4c67b886a 11.9 51,534 2,948 429,856 109,289
spring-boot 56,378 828 7a3bd6d44 8.3 49,025 5,674 330,089 117,460
assertj-core 1,981 259 f8730b34c 11.0 48,611 4,466 192,774 61,390
drill 1,562 168 771c81194 9.3 48,539 4,289 576,427 56,317
wicket 570 83 e8cdd56db 16.5 46,598 3,256 216,748 147,121
hibernate-search 390 58 994cb9e82 13.5 42,596 4,044 263,523 136,040
netty 27,185 526 6724786dc 12.7 38,016 2,700 300,383 68,104
ant 303 58 5f8c6370a 21.1 33,616 1,317 145,017 78,089
pmd 3,482 229 848ec2e7b 18.6 31,604 2,832 142,831 108,589
mongo-java-driver 2,422 151 38117f16f 11.9 27,991 1,648 133,717 74,750
antlr4 10,306 259 dc6678847 11.3 27,909 652 56,952 22,107
DSpace 573 146 3c1b90d60 19.2 26,394 2,551 261,003 61,574
openmrs-core 1,017 371 ffcc19911 15.2 24,382 1,149 126,645 63,931
fastjson 23,594 173 9b8b18677 9.7 20,768 2,982 179,371 9,460
javaparser 3,771 157 1ce7d85c2 9.3 20,309 1,651 175,026 72,545
logging-log4j2 1,230 122 e24e2e890 11.1 19,997 2,262 173,812 46,656
jgit 983 140 4560bdf7e 10.8 19,010 1,587 232,145 30,665
titan 5,135 34 ee226e524 3.8 16,796 904 74,510 27,617
checkstyle 6,115 287 3d8b43445 19.6 16,350 2,702 239,197 51,991
commons-lang 2,138 160 a1495290b 18.6 13,944 397 84,443 39,937
voldemort 2,475 65 a7dbdea58 6.4 12,157 997 175,868 19,722
cucumber-jvm 2,291 226 bb8f6bb1e 12.4 10,678 777 43,999 25,250
junit5 4,691 167 da2dee2bf 5.8 9,928 1,190 80,768 35,207
swagger-core 6,796 202 567bb88c9 9.8 9,653 761 50,583 13,836
mockito 12,043 221 43facffb6 13.2 8,991 944 55,569 27,011
mybatis-3 15,965 182 b791f4476 11.1 8,850 1,238 60,825 15,166
lombok 10,391 114 5120abe47 11.7 7,789 1,503 84,609 15,509
flyway 5,987 2,821 03bec1cc4 11.2 7,697 445 24,948 12,298
atmosphere 3,524 111 75f568553 10.7 7,466 417 41,605 13,463
okhttp 40,428 236 edf477cb4 9.7 7,387 158 37,132 39,574
vraptor4 343 48 593ce9ad6 5.6 6,988 551 26,725 9,049
astyanax 1,021 55 dadde734e 9.8 6,391 618 55,399 9,732
Essentials 1,086 215 2c68d1b86 10.1 6,381 442 41,610 19,943
Hystrix 21,751 109 3cb215898 6.7 5,890 411 50,510 7,231
Twitter4J 2,563 132 8376fade8 11.2 5,546 411 31,577 20,667
jna 6,655 143 a0641dd92 23.2 4,787 564 87,353 13,726
junit4 8,160 151 02aaa01b 20.9 4,762 471 31,242 13,060
hawtio 1,233 102 bbd681905 8.5 4,642 204 15,259 4,140
truth 2,296 83 60dcd0931 10.0 4,609 185 34,461 13,154
commons-io 787 76 29b70e15 19.0 4,207 360 39,836 16,667
rabbitmq-java-client 996 52 cc7c86773 13.2 4,161 367 32,052 10,092
hector 648 71 a302e68ca 10.8 3,682 459 31,365 6,123
gson 19,809 109 ceae88bd 12.4 3,633 207 25,280 5,781
spark 30,409 1,694 54079b0f9 10.7 2,089 986 79,958 3,224
Total 518,433 14,793 - 653.0 1,598,592 122,535 10,846,053 3,171,244
Mean 9,782 279 - 12.0 30,162 2,312 204,643 59,835
Median 3,482 157 - 11.0 16,796 1,238 126,645 35,207
Min 303 34 - 4.0 2,089 158 15,259 3,224
Max 56,378 2,821 - 24.0 130,333 11,282 1,259,298 249,504

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 6 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

provides a JSON file containing all the commit SHAs for
commits that modified the method. Counting the number of
commits for a method automatically provides the #Revisions
that the method underwent. Each commit also contains the
current source code of the method, in addition to the git

diff which contains all the newly added lines and deleted
lines between the current method version and the previous
method version. With this source code information, we have
calculated different change sizes and types (e.g., diff size,
addition only, and edit distance) of a source code method
that we use in RQ4. For example, just calculating how many
lines in the git diff record start with a + gives how many
new lines were added in a particular commit for a given
method. If we take the sum of all the values that we get for
each of the change commits, we get the total newlines that
were added to a method during the study period. To capture
the edit distance, we have used the getLevenshteinDistance
() method from the Java StringUtils class.

3.4.2. Bug-proneness
The CodeShovel tool capture the commit messages of

each of the change commits for a given method. The bug-
proneness of any method is defined as the number of its
change commits that are bug-fix commits. Previous studies
have used different sets of bug-related keywords to identify
if a commit is a bug-fix or not: a commit is a bug-fix commit
if its message contains any of those keywords. Zhang and
Hassan [51] used ‘bug’ ,‘fix’, ‘error’, ‘issue’, ‘crash’, ‘prob-
lem’, ‘fail’, ‘defect’, and ‘patch’ while Ray et al. [101] used
‘error’, ‘bug’, ‘fix’, ‘issue’, ‘mistake’, ‘incorrect’, ‘fault’,
‘defect’, ‘flaw’, and ‘type’ as the bug-related keywords. We
considered the subset from the union of all keywords used
in earlier studies [101, 36, 102] resulting in a list of 10
keywords: error, bug, fixes, fixing, fixed, mistake, incorrect,
fault, defect, and flaw. From the previous works, we have
excluded the ‘issue’ and ’type’ keywords, because our man-
ual inspection suggested that they produce too many false
positives. We searched for exact matches of these keywords
from the commit message, partial matches were ignored.

3.5. Statistical Tests
Throughout this analysis, we use a consistent set of tests.

3.5.1. Correlation Analysis
Correlation analysis is usually the first step for building

a bug prediction model [103, 52, 21, 51]. These analyses
measure the strength of association and the direction of
the relationship between two variables. If the two variables
move in the same direction, those variables are said to have
a positive correlation. If they move in opposite directions,
then they have a negative correlation. The strength of corre-
lation ranges from −1 to +1, where −1 indicates a strong
negative and +1 indicates a strong positive correlation.
A value of 0 indicates the two variables are completely
independent [51, 103]. Correlation analysis is important as
it helps to select predictors to build models [26, 104, 51]. A
strong association between the outcome and the independent
variable implies the variable is a good candidate for bug

prediction models [51]. Furthermore, a strong correlation
between multiple predictors can help researchers remove
unnecessary predictors to reduce model complexity.

There are several types of correlation coefficient statis-
tics, including Pearson r, Kendall 𝜏, and Spearman 𝜌 [105].
The selection of a particular analysis depends on the dis-
tribution of data and the presence of outliers. Pearson r
is a parametric test and assumes the data are normally
distributed. We applied the Anderson-darling normality
test [106] for several projects and found that their code
metrics’ distributions are not normally distributed.

Spearman 𝜌 and Kendall 𝜏 are non-parametric tests that
work with rank-ordered variables [105]. For our analysis, we
selected Kendall 𝜏 because it is more robust to outliers, and
commonly adopted in many SE research studies [107, 44,
26].

3.5.2. Statistical tests
In cases when we needed to test if two given distributions

are statistically significantly different, we used the two-sided
Mann-Whitney U [105] test with a confidence interval of 95
percent (i.e., 𝛼= 0.05). This is a non-parametric test and does
not assume any distribution of the data.

To quantify the size of the difference between two dis-
tributions, we used Cliff’s 𝛿 [108]. For effect sizes, Cliff’s
𝛿 (a non-parametric test) represents the degree of overlap
between two samples. This is more accurate and robust than
Cohen’s d [109]. The 𝛿 value ranges between −1 and +1
where a negative value implies that the second sample values
are greater than the first sample and a positive value indicates
the opposite. We used prior work mapping of Cliff’s 𝛿 value
to label the degree of effect size [51, 110]: negligible (0 ≤
|𝛿| < 0.147), small (0.147 ≤ |𝛿| < 0.330), medium (0.330 ≤
|𝛿| < 0.474) and large (0.474 ≤ |𝛿| ≤ 1). Unless otherwise
stated, all the presented results in this paper are statistically
significant (𝑃 < 0.05).

3.5.3. Versioning technique for code metrics
As we mentioned earlier, a method can have different

SLOC values while it evolves. Consider a method that was
revised 5 times with SLOC values 10 (r0), 20 (r1), 10 (r2),
20 (r3), and 50 (r4). Here the value of the dependent variable
is 4 (i.e., #Revisions after the method’s introduction r0), but
what would be the value of the independent variable? Should
the SLOC be the introduction value (10), the most recent
(50), or the mean (22)? Although using the mean is a popular
choice among the research community [35, 111, 7, 51],
it is sensitive to skewness [112]. Zhang and Hassan also
investigated dispersion, such as standard deviation, as an
aggregation scheme for method-level to file-level data to
determine its impact on bug prediction models [51].

While all these can be valid decisions for training change
or bug prediction models, these SLOC measurements do not
represent the actual number of changes or bugs triggered by
a particular SLOC value. For example, if the initial SLOC
value represents this method, we have to associate SLOC
10 with four revisions, which would be inaccurate, because

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 7 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

SLOC 10 is responsible for two revisions only. Chowdhury
et al. [44, 61] claimed that the versioning technique is more
accurate where the above method will have three versions
that map each SLOC responsible for inducing a change or
bug-fix commit. With the versioning technique, the method
in the above example has the following SLOC values: SLOC
10, SLOC 20, and SLOC 50. SLOC 10 maps to 2 revi-
sions, SLOC 20 maps to 2 revisions; SLOC 50 will map
to 0 revisions because it did not induce any change. The
versioning technique is frequently applied in bug-prediction
research where code metrics are calculated from the version
where a code component was involved in a bug-fix commit
(e.g., [42, 40, 5]).

The following pseudo-code represents the algorithm for
calculating the versioned source lines of code (SLOC) for a
single method.

1: result ← {}
2: 𝑙𝑎𝑠𝑡_𝑠𝑙𝑜𝑐 ← 𝑆𝐿𝑂𝐶[𝑆𝐿𝑂𝐶.𝑙𝑒𝑛𝑔𝑡ℎ − 1]
3: if 𝑆𝐿𝑂𝐶.𝑙𝑒𝑛𝑔𝑡ℎ > 1 then
4: // SLOC.length-2 skips the last element in the array
5: for 𝑖 ← 0 to 𝑆𝐿𝑂𝐶.𝑙𝑒𝑛𝑔𝑡ℎ − 2 do
6: if 𝑆𝐿𝑂𝐶[𝑖] present in result then
7: result[𝑆𝐿𝑂𝐶[𝑖]] ← result[𝑆𝐿𝑂𝐶[𝑖]] + 1
8: else
9: result[𝑆𝐿𝑂𝐶[𝑖]] ← 1

10: end if
11: end for
12: if 𝑙𝑎𝑠𝑡_𝑠𝑙𝑜𝑐 is not present in result then
13: result[𝑙𝑎𝑠𝑡_𝑠𝑙𝑜𝑐] ← 0
14: end if
15: else
16: result[𝑙𝑎𝑠𝑡_𝑠𝑙𝑜𝑐] ← 0
17: end if

4. Results: Methodological Decision Impact
In this section we detail the resulting impact of reason-

able and commonly used alternatives for the five method-
ological decision points researchers and practitioners must
reason about when deploying analyses based on historical
software evolution data.

4.1. RQ1: Does the SLOC selection methodology
impact evolutionary analyses?

Can the common scenario encountered by prior relevant
studies [71, 45, 44, 72, 46, 15] while calculating a code
metric value induce contradictory findings about a code met-
ric’s effectiveness? Figure 1a shows the cumulative distribu-
tion function (CDF) of the correlation coefficients between
SLOC and #Revisions for all 53 projects. According to the
figure, all measurement techniques (except versioned SLOC)
exhibit similar performance where Cliff’s 𝛿 effect size is
negligible in most cases. This is not surprising because a
large number of the methods (41%) were never modified af-
ter their introduction, having identical values for their intro-
duction, last, mean, and median since they all measured the
same single commit. Our finding about the large number of
unmodified methods complements earlier studies [70, 113].

However, when considering versioned SLOC we observe
that for ∼50% of the projects, the correlation values are
higher compared to the other measurement techniques.

For better insights, we also reevaluated the correlation
values by considering methods that were revised at least
once (Figure 1b). Now, the correlation values of different
SLOC measures with #Revisions are significantly higher
than the values obtained using versioned SLOC. With SLOC
versioning, we observe that the strength of the correlation
between SLOC and maintenance is not as strong as has been
previously claimed (e.g., [26, 90, 27, 38]). This observation
emphasizes the importance of methodological choices, since
various SLOC aggregation approaches, such as using the
mean SLOC for a method, can overstate results if the ver-
sioning technique is considered more accurate.

Similarly, considering methods that change at least once,
the correlation of SLOC with #Bugs (Figure 1c) also shows
that other SLOC measures exhibit higher correlation than
versioned SLOC for most projects.

RQ1 Summary
Most of the SLOC measurement techniques, such
as using only the introduction, the last, or the mean
value, show similar performance while estimating
change- and bug-proneness. These approaches, how-
ever, can produce very different observations when
compared to the versioning techniques which is also
common in the literature [42, 40, 5, 61, 69, 44].

4.2. RQ2: Does normalized size produce different
results?

Consider a method with SLOC 𝑠1 that was associated
with 𝑛 revisions, and a second method with SLOC 𝑠2 and 𝑚
revisions. Usually [26, 61], 𝑠1 and 𝑠2 are treated as the values
of the independent variable SLOC, whereas 𝑛 and 𝑚 are
treated as the values of the dependent variable #Revisions.
This is also true while performing bug-proneness analysis.
However, the number of revisions per line of code (change-
density) or the number of bugs per line of code (bug-density)
can also be considered as the dependent variable [75]. In that
case, 𝑛 and 𝑚 will be replaced by 𝑛∕𝑆𝐿𝑂𝐶 and 𝑚∕𝑆𝐿𝑂𝐶 ,
respectively. Do these two different approaches produce
different results?

Figure 2a shows that for all 53 projects, the correlations
between SLOC and #Bugs (and #Revisions) are positive,
complementing previous studies [114, 18, 29, 30]. However,
when density is considered, the outcome becomes less clear.
For the revision density, the correlations are negative for
∼70% of the projects. This clearly suggests that small meth-
ods have a higher density in the number of revisions. This
would be in contradiction with previous studies (e.g., [114,
18, 29, 30]) if the density in the number of revisions and
the total number of revisions are used interchangeably as an
indication of change-proneness.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 8 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Intro
Last
Mean
Median
SLOCVersion

(a) SLOC with #Revisions (all)

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Intro
Last
Mean
Median
SLOCVersion

(b) SLOC with #Revisions (at least one revision)

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Intro
Last
Mean
Median
SLOCVersion

(c) SLOC with #Bug (at least one revision)

Figure 1: Distribution of correlation coefficients between different SLOC measurements with number of revisions and bugs for all
53 projects. For graph readability, we marked after every 5 points only.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 9 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RevisionDensity
#Revisions
BugDensity
#Bugs

(a) SLOC density with #Revisions/#Bugs

small medium large
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Revisions per SLOC distribution

small medium large
0.0

0.1

0.2

0.3

0.4

0.5

(c) Bugs per SLOC distribution

Figure 2: (a) compares the correlation distribution of #Revisions and #Bugs with their respective densities. (b) and (c) show
their density distributions by grouping methods into small, medium, and large. In (c), we considered methods that have at least
one bug.

Bug density, however, does not show the same trend.
For ∼90% of the projects the correlations are still posi-
tive, which is quite surprising because change-proneness
and bug-proneness are supposed to be correlated [85, 35],
thus should not exhibit two very different correlations with
SLOC.

To have a deeper insight, we further explore the dis-
tribution of these density values by grouping methods in
different SLOC categories based on Spadini et al.’s [18]
work: small (𝑆𝐿𝑂𝐶 < 30), medium (60 > 𝑆𝐿𝑂𝐶 > 30),
and large (𝑆𝐿𝑂𝐶 > 60). Figure 2b shows that methods
in the small group have a higher revision density than the

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 10 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

methods in medium and larger groups, consistent with our
observation from Figure 2a. When we draw the same graphs
for bug density, the graph becomes unreadable, because most
methods do not have a bug associated with them (83%).
This extremely skewed bug distribution could explain the
inconsistent result we observe in Figure 2a. Indeed, when
we consider methods with at least one bug (Figure 2c) we
now clearly see that even bug density is higher in smaller
methods.

A natural question is whether getter and setter methods
impacted these results. We, therefore, repeated the exper-
iments after excluding them but observed similar results.
One may also argue that the correlation with density be-
comes negative due to the inverse relation between 𝑆𝐿𝑂𝐶
and (#𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠∕𝑆𝐿𝑂𝐶) or (#𝐵𝑢𝑔𝑠∕𝑆𝐿𝑂𝐶) [115]. This
argument, however, is invalid because #Revisions and #Bugs
are not constant across methods with different sizes [61].

RQ2 Summary
Considering SLOC as an example of code metrics,
we found that maintenance analysis can be contra-
dictory if the evaluation context is not considered.
Large methods are more maintenance-prone when
the total number of revisions or bugs is considered.
When density is considered, smaller methods are,
surprisingly, more maintenance-prone than larger
methods.

4.3. RQ3: Do different ages of methods and
temporal choices induce inconsistent results
for change/bug proneness?

Previous studies on code maintenance either did not con-
trol for method age or were not explicit about this control [29,
30, 116, 40]. This oversight is significant because the age
of a code component is relevant when estimating its future
maintenance burdens [69, 44]. While calculating the corre-
lation between age and the number of revisions (or bugs)
reveals a weak relationship—partly because many methods
in our datasets have never been changed—considering the
last change date of a method as an indicator of its age shows
a stronger correlation. Specifically, the correlation between
method age and the number of bugs is 0.36, and with the
number of revisions, it is 0.73.

These significant correlation coefficients indicate that
age is an important factor that should be experimentally
controlled—e.g., we should not compare a newly introduced
method with a five-year-old method.

To get more insight into the impact of age normalization,
we followed two steps. In step 1, we removed all the methods
that are less than 𝑥 years of age. In the filtered samples, all
the methods will be at least 𝑥 years of age (𝑥 can be any
value that we show later). This makes sure no methods in our
dataset have an age less than 𝑥 years. Unfortunately, we may
still compare an 𝑥 year-old method with an (𝑥 + 𝑖) year-old
method. Therefore, in step 2, we removed all the revisions

and bug-related data that occurred after 𝑥 years of a method’s
life.

Figure 3a compares the correlation between SLOC and
#Revisions with no age-normalization and age normaliza-
tion for different values of 𝑥. We observe that without
age control, the correlation of SLOC with #Revisions is
underestimated for most projects when compared with age-
normalized methods. This is particularly true when the value
of x is 0.5 years (Figure 3a). As a result, without age
normalization, the interpretation of comparing correlation
values is inaccurate. The performance difference between
0.5 years with no age control is statistically significant
(Mann-Whitney U test) with a medium effect size (Cliff’s
𝛿).

In contrast, when correlating SLOC values with #Bugs,
we did not observe any significant results when comparing
the different time ranges with the no age control group. For
example, the performance difference between 0.5 years and
no age control group is not statistically significant (𝑝 >
0.05).

We also evaluated if the choice of intervals, for cap-
turing change and bug information, impacts code metric
performance. For an interval between year x and year y, we
removed all the methods with less than y years of age. Next,
from the filtered samples, we consider changes and bugs that
occur only between year x and year y. Consistent with our
earlier observation, the performance of SLOC is much better
(higher correlation coefficients with #Revisions) for 0-0.5
year interval than the other intervals (Figure 3b). Although
to a lesser extent, this observation is true for bugs as well
(Figure 3c).

As age normalization is important for accurate obser-
vations, for all the other RQs we have used two years of
age normalization with which we were able to retain 88%
of the methods and 65% of the change history that those
methods underwent. Had we considered less than two years,
we would have significantly decreased our method histories
potentially biasing our results. With more than two years
of age normalization, on the other hand, would reduce the
number of methods significantly.

RQ3 Summary
Age normalization is important for understand-
ing the true maintenance impact of code metrics
(e.g., SLOC). The amount of history analyzed for
a method influences the predictive power of the
model. Therefore, using different projects’ snapshots
in different research studies hinders making a gen-
eralized observation about code metrics’ impact on
software maintenance. This may also explain the
contradictory findings in earlier studies [44] about
code metrics’ effectiveness. We found that code met-
rics, such as SLOC, show the highest correlation
with maintenance in the first six months of a method
history.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 11 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

0.0 0.1 0.2 0.3 0.4
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0.5 yr
1 yr
2 yrs
3 yrs
4 yrs
NoAgeCtrl.

(a) SLOC with #Revisions

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0-0.5 yrs
0.5-1 yr
1-2 yrs
2-3 yrs
3-4 yrs
4+ yrs

(b) SLOC with #Revisions

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0-0.5 yrs
0.5-1 yr
1-2 yrs
2-3 yrs
3-4 yrs
4+ yrs

(c) SLOC with #Bugs

Figure 3: (a) compares different correlation coefficients of SLOC with #Revisions with no age normalization for 53 projects.
(b) and (c) is the distribution of correlation coefficients at different intervals between SLOC with #Revisions and #Bugs for 53
projects. For graph readability, we marked after every 5 points only.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 12 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

4.4. RQ4: Can the size and type of changes impact
maintenance analysis?

Many code metric studies look at the total number of re-
visions without classifying the size of changes and use it as a
maintenance indicator [85, 55, 100]. Some studies, however,
focused on change sizes, such as the diff size [84, 85]—the
number of added and deleted lines; new additions [85]—the
number of added lines only; and edit distance [86, 39, 84]—
the number of characters that need to be added, deleted, or
updated to convert one source code version into another.
For a specific method version, we have added all of its diff
sizes from all of its change commits while calculating the
total diff size for that method version. We repeated this
for other change size indicators as well. We investigate if
these variations in change-proneness measurements produce
different results while associating with code metrics. Fig-
ure 4 shows that the three change size indicators perform
very similarly while analyzing their correlation with SLOC.
However, when only the #Revisions are considered, the
performance of SLOC dwindles significantly. This indicates
that studies that considered #Revisions as the only change-
proneness indicators were underestimating the predictive
power of source code metrics.

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

#Revisions
NewAdditions
DiffSizes
EditDistance

Figure 4: Cumulative distribution function (CDF) of the
correlation coefficients between SLOC and different change
sizes. For graph readability, we marked at every five points
only.

A method can go through many changes without sig-
nificantly changing its behavior. For example, through code
refactoring, a method can be moved to a new file, or its
container file can be renamed. Changes can also happen to
a method’s documentation. CodeShovel, the tool we used
to trace a method’s change history, captured all of these
changes. It is possible that practitioners when they aim
to predict maintenance-prone methods, may like to ignore
these types of changes from their analysis. For example,
Kawrykow and Robillard found that out of all changes
applied to a method, 15.5% were trivial [87]. As a result,
the total number of changes performed on a method might

exaggerate the number of important changes performed on
it.

To facilitate analysis considering different types of changes,
we further decompose the number of revisions according to
the type of change and examine the correlation of different
kinds of changes with SLOC to understand the change-
proneness of a method. CodeShovel provides these raw
change categories as it traverses the method history. We
consider the following four types of changes, with some
overlaps, to observe if types of changes can impact code
metrics and maintenance analysis. And if so, how much is
the impact?

1. #EssentialChanges: All changes that modify the
content of a method’s signature or its body. Method
signature changes include modifier changes (e.g.,
from public to private), parameter changes (either in
type or name), exception changes, parameter meta-
information change (e.g., final keyword added), method
rename, and return type changes.

2. #BodyChangesOnly: Body change refers to a change
made to the implementation of a method. This can
include modifications to the statements or expressions
that make up the method’s body, as well as changes
to the structure or control flow of the method. In our
work, all changes made to the body of a method, with
the exception of cosmetic changes such as formatting
or whitespace, are categorized as BodyChange.

3. #NonEssentialChanges: All changes related to for-
matting, annotation changes (e.g., @test, @suppress),
and documentation changes. Also includes cross-file
changes such as renaming the file or moving methods
from one file to another. Formatting changes include
both white space and indentation changes.

4. #Revisions: Any revision of a method, including non-
essential changes.

Figure 5 shows that significantly different outcomes in
correlation values can be obtained by accounting for the type
of changes. We found that the correlations of SLOC with
#BodyChanges and #EssentialChanges are much higher
compared with #NonEssentialChanges. For example, if
#Revisions is calculated with #EssentialChanges only, the
correlation coefficient is ≥ 0.3 for 60% of our projects,
but no project has such correlation coefficient if #Revisions
is calculated with #NonEssentialChanges only. Clearly, the
performance with the #Revisions is significantly impacted
because of #NonEssentialChanges.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 13 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

#Revisions
#Essential
#Body
#NonEssential

Figure 5: Distribution of correlation coefficients of SLOC with
different types of changes for 53 projects. For graph readability,
we marked after every 5 points only.

RQ4 Summary
Prior studies have differed in how they calculated
change-proneness (both in size and type). Our re-
sults show that these differences can be one of the
many root causes behind the contradictory findings
about code metrics and maintenance. Non-essential
changes, such as file renaming, and method move
can degrade the predictive power of code metrics.

4.5. RQ5: Do aggregate project analyses
meaningfully reflect the correlation for
individual project analyses?

Prior work is broadly divided into two categories for an-
alyzing software projects related to code metrics and main-
tenance studies. While some studies aggregated all the code
metric data from their selected projects to produce a single
statistical value to understand maintenance [18, 26, 35],
others opted for individual project analysis [90, 85, 22, 88].
Can these two approaches produce significantly different
results?

We explore the differences between aggregated and indi-
vidual project analyses further with our dataset. Combining
all projects, we found that the overall correlation coefficient
for SLOC with #Revisions is 0.22 and is 0.15 for #Bugs
(Figure 6). We observe that almost half of the projects are
within ± 0.05 of these aggregated values for SLOC with
#Revisions (∼40%) and #Bugs (∼52%). We selected 0.05 as
this is 1/20𝑡ℎ of the max correlation value (1.0) and is small
enough to capture all projects close to aggregated value.
Therefore, aggregated project analysis seems to represent
correlation accurately only for ∼50% of the projects. Given
the spread across the correlation values, the chances of
an aggregate value overestimating or underestimating the
#Revisions and #Bugs is high. At the same time, individual
project analysis can be misleading if the number of selected

0.0 0.1 0.2 0.3 0.4
Correlation Values

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

#Revisions
#Bugs

Figure 6: Distribution of correlation coefficients of SLOC with
#Revisions and #Bugs for 53 projects. Red and green square
denotes the aggregated correlation coefficients between SLOC
and #Revisions, and SLOC and #Bugs, respectively.

projects is very small. From Figure 6, we observe that for
some projects the correlations are close to 0, whereas for
some others the correlations are close to 0.4—two very ex-
treme observations. As a result, code metrics research should
rely on individual project analysis, but with a significantly
large number of projects.

RQ5 Summary
Per-project correlations differ meaningfully from ag-
gregate analyses for maintenance indicator predic-
tion. Correlations should be computed on individual
projects, as aggregated analysis can be impacted by a
few outliers. To produce reliable conclusions, a large
number of projects should be analyzed.

5. Discussion
In this section, we discuss the implications of our find-

ings along with the threats to the validity of our analysis.

5.1. Guidelines for Future Studies
When preparing a data collection pipeline it is crucial

that the data be collected and pre-processed in a method-
ologically sound manner. In this work, we demonstrated the
impact of different decisions on large historical datasets that
can lead to inconsistent conclusions depending on method-
ological choices.

Since the SLOC values of most methods do not change [70,
113], the correlation values for a method’s introduction, its
last commit, and median provide consistent results with #Re-
visions and #Bugs. One may argue that, out of these available
options, practitioners can use them interchangeably to train
models on past historical data and predict future changes and
bugs without much contradiction in the outcome. However,

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 14 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

these measurements overestimate the association of SLOC
with maintenance indicators and are not truly effective as
one might presume when compared with a more accurate
representation of SLOC to their respective changes and
bugs (e.g., SLOC versioning). This is probably one of the
reasons for unsuccessful maintenance prediction models
when evaluated with realistic scenarios [26, 42, 69].

Recommendation
We recommend that future studies should use the
SLOC versioning technique for more consistent out-
comes, because other aggregated techniques, such
as mean, do not accurately map a code metric to its
corresponding maintenance.

Once a representation for SLOC is chosen, researchers
and practitioners should decide (and report) how they cal-
culate change- and bug-proneness: are they considering the
total number of changes and bugs or the change or bug den-
sity? These decisions are important because the outcomes
are completely opposite based on the prediction variables.

Recommendation
For replicability, extension, and interpretation, fu-
ture studies should report and justify their ratio-
nale for selecting total changes (or bugs) instead of
change or bug density, and vice versa.

The next decision is deciding on a timeframe for model
training. Our results indicate that unstable conclusions and
predictive models can be generated if different subsets are
used from different timeframes. This is mainly due to con-
cept drift [117, 69, 118]. A previous study [69] reported
that even a complex code component may become less bug-
prone as it has probably gone through enough corrective,
and perfective changes. Our result indicates that the first
six months of method history show the strongest correlation
between code metrics and different maintenance indicators.

Recommendation
To understand the accurate impact of code metrics,
researchers should select multiple snapshots of the
same project. The impact of code metrics on main-
tenance reduces over time. Therefore, researchers
should explain and justify their selection of a par-
ticular project snapshot if they use only one.

A method can experience a large number of changes in
its lifetime. While each of these changes has a purpose, a big
fraction of these changes are unrelated to the actual content
of a given method and are often not harmful. Therefore,
change classification should be performed so that models do
not overestimate or underestimate future changes.

Recommendation
Change analysis should be performed only for im-
portant changes, discarding non-essential changes
from the dataset, such as method move and file
rename. These non-essential changes reduce the cor-
relation strength between code metrics and mainte-
nance.

Finally, our results indicate that aggregated project anal-
ysis can be misleading, especially if there are outlier projects
in the dataset. Similarly, individual project analysis can
produce inaccurate conclusions if very few projects are
analyzed.

Recommendation
Researchers should analyze a large number of
projects individually to understand when and why
code metrics are good maintenance indicators (con-
text is king). In case when aggregated analysis is
necessary, they should consider the impact of outlier
projects, and can probably discard them from their
analysis.

A pertinent question may arise regarding the relevance
of our findings in the context of recent studies that have ex-
plored embedding-based models to enhance bug prediction.
Code metrics have been essential for the past four decades
and continue to be highly relevant today, as demonstrated
by recent research such as that conducted by Aladics et
al. [3]. Their study demonstrated that bug prediction models
achieve optimal performance when combining embeddings
with code metrics. In some instances, such as with models
using the RandomForest algorithm, code metrics alone can
outperform embedding-based models. Additionally, Mash-
hadi et al. [4] showed that incorporating code metrics along-
side code representation (e.g., token embeddings) can en-
hance the performance of LLM-based bug prediction mod-
els, like CodeBert. This underscores the continued relevance
of code metrics.

Our recommendations are also applicable to mainte-
nance studies that concentrate solely on embedding features.
For example, RQ4 explores how the selection of dependent
variables (e.g., change sizes and types) can significantly
influence study outcomes, while RQ5 examines the impact
of analyzing individual versus aggregated projects. These
insights are crucial for embedding-based research, as the
variability in embeddings across different projects can sig-
nificantly affect model performance.

5.2. Threats to Validity
As with any complex analysis, this work has several

threats:
Conclusion validity: The results of complex software anal-
yses rely on both the correctness of the analysis and the
underlying data preparation methodologies. In this work, we

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 15 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

have examined the impact of specific methodological ques-
tions to help analysis designers better prepare their data for
analysis. To help guard against threats to conclusion validity
we verified the underlying data distribution before applying
non-parametric tests and used the more conservative Kendall
𝜏 to evaluate association strengths instead of Spearman 𝜌. To
reduce the threat that method heterogeneity could impact our
findings, we examined small, medium, and large methods
independently when it was necessary.

We have employed size as the representative of other
code metrics based on previous research indicating that size
exhibits a strong correlation with various metrics [26, 59].
Consequently, our conclusions could be challenged. Future
studies should explore whether our findings remain valid
when considering alternative code metrics beyond just size.
Internal validity: The precision of our keyword-based bug
labeling approach can be impacted due to the tangled code
changes [82]. Identifying the unrelated code changes in a
bug-fix commit, unfortunately, is an open and active research
problem [119, 69]. The findings in this paper rely on the
method histories being accurate and complete. While the
CodeShovel tool has been shown to have high accuracy when
finding the complete history for 90% of methods, including
97% of historical changes, any automated history-tracking
approach is bound to miss some changes. While SLOC is
the most commonly used metric used for predicting change-
and bug-proneness, other metrics that may not correlate with
SLOC could also be appropriate for future investigation.
This paper investigates a limited number of aggregation
techniques at method-level; other measures like Gini [120],
Atkinson [121], and Shannon entropy [122] might produce
different results.
Construct validity: Our tool for computing metrics for each
method at each revision can induce measurement error since
the process is fully automated. To reduce this threat, two
authors verified the correctness of our tool by randomly
selecting and validating 1000 Java methods for all collected
metrics. Also, while evaluating the impact of the method-
ological choices for a given code metric, we kept the choice
for other code metrics the same. For example, in RQ1,
while we were investigating the impact of different ways of
SLOC measurements, we used #Revisions as the indicator
of change-proneness. If we use all other change-proneness
indicators, we have to evaluate at least eight more scenarios
for each of the size measurement choices. For instance, for
the SLOC measurement with the versioning technique alone,
we have to experiment four times for four different revision
sizes (Figure 4), and four times for four different revision
types (Figure 5). This large number of combinations is true
for all research questions. For each research question, if we
do not keep other factors constant while evaluating a given
factor, the number of figures (and their analysis) will be too
many which may impact the presentation and readability
of the paper. This, however, can be considered a threat to
our observations. We mitigated this threat by experimenting

with a few of the possible different experimentation scenar-
ios. The observations are still the same: the choice we make
significantly impact the outcome of code metric studies.
External validity: The most significant threat to the gener-
alizability of our results stems from our project selection. All
projects were open source systems written in Java. Closed-
source systems may exhibit different correlation between
SLOC with number of revisions and bugs than open-source
systems, as might non-Java systems. Finally, while the age
range of the systems was reasonable (with 20 having his-
tories of over 12 years), examining additional systems with
different characteristics could also increase the generaliz-
ability of our findings. The external validity of our findings
could also be further improved by demonstrating the impact
of differing choices on the predictive outcomes of already-
existing models.

6. Related Work
A variety of inconsistencies has arisen in prior work,

driven at least partially by the five methodological decisions
examined in this paper.

6.1. Measurement Selection
When performing coarse-grained analyses (e.g., file,

module, or system), researchers and practitioners are forced
to select an aggregation scheme that combines multiple
method-level metrics to a coarse-grained level. One of the
most popular choices among the research community is to
use the average value of a metric [35, 111, 7, 51]. Zhang et
al. [7] built a universal cross-project bug prediction model
and aggregated method-level data to file level using max,
average, and summation scheme and clustered projects based
on the similar distributions of 6 metrics (e.g., lines of code,
number of files, number of commits, number of developers,
etc.). Similarly, in another work, Zhang and Hassan [51]
experimented with different aggregation techniques of soft-
ware metrics and observed their impact on bug prediction
models. They also aggregated method-level data to file
level and examined 11 aggregation schemes such as sum,
mean, median, standard deviation, Gini [120], Hoover [123],
Atkinson [121], Shannon entropy [122], etc., and compared
the correlation of these aggregated metrics with SLOC.

While these aggregation schemes are some rational
choices a researcher could make, they can interfere with
the correlation among metrics [124, 38, 104] and produce
inconsistent results. Vasilescu et al. [124] found that values
aggregated using mean from method level data to package
level leads to inconsistent correlation results of SLOC with
bugs for some projects. As these aggregation schemes can
also be applied to method [35] having different SLOC values
at each revision, contradictory results could also be based on
which schemes were used.

6.2. SLOC Control
Most practitioners agree that a file with more lines of

code is more bug-prone [125]. Size as a metric has been
studied extensively in the literature at various granularity

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 16 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

(e.g., class [111], system [126], packages [29, 30, 116]) and
in different contexts. For example, prior work studied the
relationship of size such as a large number of test methods
per class with the density of test smells [127] and code
coverage [107]. Although Greiler et al. [127] found that
the number of test methods per class is related to the higher
density of test smell, having a higher number of test methods
is not indicative of effective test suite [107].

Similarly, several works [59, 74, 26] have analyzed the
impact of class size on maintenance prediction models. Kore
et al. [128] applied a tree-based classification technique to
detect change prone-class and observed that large classes
tend to change more than smaller classes. Although the
results obtained from these models are insightful, these re-
sults are not transferable to other count-based bug prediction
models that rely on the number of bugs [29]. A possible
cause of this inconsistency could be that the number of
bugs in such a system is not being normalized by SLOC
appropriately.

Lefever et al. [81] found that after normalizing size,
there are substantial inconsistencies in the software qual-
ity reporting tools (e.g., SonarQube, DV8, Structure 101)
when identifying the most problematic files. Although these
disagreements are perceived at a higher level of granularity
(e.g., system level [126], classes [111], files [129] or pack-
ages [29, 30, 116]), they also exist at method-level, as our
study has shown.

6.3. Age Control
Many studies have used time-based sampling techniques

to understand software evolution or to build bug predic-
tion models at coarse granularity (e.g., system level [126],
classes [111], file, packages [29, 30, 116]). For example,
at the system level with a time interval of 3 months, Os-
man et al. [130] compared the evolution of different types
of exception handing in code (e.g., standard exceptions,
custom exceptions) between the application and third-party
libraries. Additionally, for bug prediction, time-based sam-
pling such as 3 months or 6 months [131] and all data (e.g.,
[111, 129, 126]) have been explored.

In addition, Zhang et al. [29] examined the pre-and
post-release ranking ability of SLOC at the package level
and found that 20% of the largest modules were responsible
for the majority of the bugs (51-63%). Fenton and Ohls-
son [30] observed a similar connection between size metric
(SLOC) and the number of faults but in pre-release data.
Although these coarse-grained analyses are a popular choice
among the research community, the inconsistent results of
these studies have been reported as well. Andersson and
Runeson [116] replicated the study of [30, 29] and did not
observe any ranking ability of SLOC for some projects.
Moreover, a negative result was observed in the method-
level study [35] at more realistic settings (such as release-
by-release validation models) that contradict the findings of
previous studies [40].

Menzies et al. [132] studied bug prediction results from
28 recent studies and reported that findings from these

studies contradict each other about what influences software
bugs. They found that for different chunks of data, a com-
pletely different model [77] is learned even from the same
project. One possible cause for inconsistent conclusions
reported in previous studies could be accounted for the age
of code components not being explicitly controlled.

6.4. Change Analysis
Several studies have used the number of revisions as a

maintenance indicator [85, 55, 100] by accounting for the
type of transformation applied to a given file or method. For
example, Koru et al. [128] evaluated change count by look-
ing at the revision history to identify the most change-prone
classes. Additionally, Farago et al. [133] observed that files
that are committed at a higher frequency (i.e., with longer
revisions history) have a negative impact on maintainability
than the files with lower commit frequency. Shrikanth et
al. [134] observed that the majority of the bugs are localized
in the early 50 commits of a project. As commit patterns are
usually impacted by practitioners’ habits and organizations’
culture, some studies [44, 87, 86, 39, 84, 85] considered
change size and types as the indicators of change-proneness,
instead of solely relying on the number of revisions.

6.5. Data Aggregation
Practitioners working with code metrics to understand

software maintenance need to decide whether to analyze
projects separately [90, 85, 22, 88] or combine them to
obtain a single statistical value for a research question un-
der analysis [18, 26, 35]. Pascarella et al. [35] aggregated
13 projects’ bug data together to build a single bug pre-
diction model although the number of bugs in each sys-
tem under analysis varied substantially. Similarly, Gil and
Lalouche [26] combined 26 projects to investigate the con-
founding effect of SLOC on other metrics, such as depth
of inheritance. Spadini et al. [18] combined 10 open-source
projects to study the change- and bug proneness of test code.

While aggregated metrics of several projects to obtain a
single value is useful, it obscures the effect of outlier projects
having a highly skewed distribution of metrics [135]. These
outlier projects are the result of software evolution that is
impacted by several external factors such as developer exper-
tise, commit pattern [82, 83], time, and budget. Therefore,
one might opt for individual analysis. Nagappan et al. [22]
studied the ability of change burst to predict the number of
bugs and were able to achieve a high accuracy of 90% for
Windows and 71% for Eclipse projects by studying them
separately. Shin et al. [85] analyzed the Mozilla Firefox web
browser and Red Hat Enterprise Linux Kernel separately
and investigated the ability of code complexity, churn, and
developer activities to discriminate between neutral and
vulnerable files and predict vulnerabilities. Although indi-
vidual project analysis overcomes the problem of aggregated
project analysis, it suffers from selection or publication
bias [26]. As there is a lack of randomization in selecting
these projects, this often results in missing out on projects
with unique characteristics.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 17 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

7. Conclusion
Software developers and researchers make decisions us-

ing metrics they have gathered from their project histories.
Collecting and analyzing this historical data requires some
important methodological choices. In this paper, we demon-
strated how common decisions for these choices can mean-
ingfully impact analysis outcomes. We showed how alternate
methodological choices for these decisions account for many
differences found in the literature. Going forward, we would
like to replicate this study with a wider variety of metrics
beyond SLOC and build alternative models following the
provided guidelines. We hope that the guidelines presented
in this work can help improve both the quality of decisions
made by practitioners and the consistency of results for
research approaches that use historical evolutionary data.

References
[1] L. J. Arthur, Software evolution: the software maintenance chal-

lenge, Wiley-Interscience, 1988.
[2] R. C. Seacord, D. Plakosh, G. A. Lewis, Modernizing legacy sys-

tems: software technologies, engineering processes, and business
practices, 2003.

[3] T. Aladics, J. Jász, R. Ferenc, Bug prediction using source code
embedding based on doc2vec, in: International Conference on Com-
putational Science and Its Applications, 2021, pp. 382–397.

[4] E. Mashhadi, H. Ahmadvand, H. Hemmati, Method-level bug sever-
ity prediction using source code metrics and llms, in: 2023 IEEE
34th International Symposium on Software Reliability Engineering
(ISSRE), 2023, pp. 635–646.

[5] R. Ferenc, D. Bán, T. Grósz, T. Gyimóthy, Deep learning in static,
metric-based bug prediction, Array 6.

[6] T. Menzies, J. Greenwald, A. Frank, Data mining static code at-
tributes to learn defect predictors, Transactions on Software Engi-
neering (TSE) 33 (1) (2006) 2–13.

[7] F. Zhang, A. Mockus, I. Keivanloo, Y. Zou, Towards building a
universal defect prediction model with rank transformed predictors,
Empirical Software Engineering 21 (5) (2016) 2107–2145.

[8] T. Hoang, H. Khanh Dam, Y. Kamei, D. Lo, N. Ubayashi, Deepjit:
An end-to-end deep learning framework for just-in-time defect pre-
diction, in: International Conference on Mining Software Reposito-
ries (MSR), 2019, pp. 34–45.

[9] S. Wang, T. Liu, J. Nam, L. Tan, Deep semantic feature learning for
software defect prediction, Transactions on Software Engineering
(TSE) 46 (12) (2020) 1267–1293.

[10] E. Arisholm, L. C. Briand, A. Foyen, Dynamic coupling mea-
surement for object-oriented software, Transactions on Software
Engineering (TSE) 30 (8) (2004) 491–506.

[11] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto,
A. De Lucia, A developer centered bug prediction model, Transac-
tions on Software Engineering (TSE) 44 (1) (2017) 5–24.

[12] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, E. J. Whitehead, Does
bug prediction support human developers? findings from a google
case study, in: 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 372–381.

[13] M. Viggiato, J. Oliveira, E. Figueiredo, P. Jamshidi, C. Kästner,
How do code changes evolve in different platforms? a mining-based
investigation, in: International Conference on Software Maintenance
and Evolution (ICSME), 2019, pp. 218–222.

[14] A. R. Sharafat, L. Tahvildari, Change prediction in object-oriented
software systems: A probabilistic approach., J. Softw. 3 (5) (2008)
26–39.

[15] Y. Zhou, H. Leung, B. Xu, Examining the potentially confounding
effect of class size on the associations between object-oriented met-
rics and change-proneness, Transactions on Software Engineering

(TSE) 35 (5) (2009) 607–623.
[16] Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, A general software

defect-proneness prediction framework, Transactions on Software
Engineering (TSE) 37 (3) (2010) 356–370.

[17] A. G. Koru, D. Zhang, H. Liu, Modeling the effect of size on defect
proneness for open-source software, in: International Workshop on
Predictor Models in Software Engineering, 2007, pp. 10–10.

[18] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, A. Bacchelli,
On the relation of test smells to software code quality, in: Inter-
national Conference on Software Maintenance and Evolution (IC-
SME), 2018, pp. 1–12.

[19] T. J. McCabe, A complexity measure, Transactions on Software
Engineering (TSE) (4) (1976) 308–320.

[20] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented
design, Transactions on Software Engineering (TSE) 20 (6) (1994)
476–493.

[21] N. Nagappan, T. Ball, Use of relative code churn measures to predict
system defect density, in: International conference on Software
engineering, 2005, pp. 284–292.

[22] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, B. Murphy,
Change bursts as defect predictors, in: International symposium on
software reliability engineering, 2010, pp. 309–318.

[23] E. J. Weyuker, T. J. Ostrand, R. M. Bell, Do too many cooks spoil the
broth? using the number of developers to enhance defect prediction
models, Empirical Software Engineering 13 (5) (2008) 539–559.

[24] L. Madeyski, M. Jureczko, Which process metrics can significantly
improve defect prediction models? an empirical study, Software
Quality Journal 23 (3) (2015) 393–422.

[25] Y. Shin, L. Williams, Can traditional fault prediction models be used
for vulnerability prediction?, Empirical Software Engineering 18 (1)
(2013) 25–59.

[26] Y. Gil, G. Lalouche, On the correlation between size and metric
validity, Empirical Software Engineering 22 (5) (2017) 2585–2611.

[27] M. Shepperd, A critique of cyclomatic complexity as a software
metric, Software Engineering Journal 3 (2) (1988) 30–36.

[28] J. Y. Gil, G. Lalouche, When do software complexity metrics mean
nothing?-when examined out of context., J. Object Technol. 15 (1)
(2016) 2–1.

[29] H. Zhang, An investigation of the relationships between lines of code
and defects, in: International Conference on Software Maintenance,
2009, pp. 274–283.

[30] N. E. Fenton, N. Ohlsson, Quantitative analysis of faults and failures
in a complex software system, Transactions on Software Engineering
(TSE) 26 (8) (2000) 797–814.

[31] R. Shatnawi, W. Li, The effectiveness of software metrics in identi-
fying error-prone classes in post-release software evolution process,
Journal of systems and software 81 (11) (2008) 1868–1882.

[32] T. J. Ostrand, E. J. Weyuker, R. M. Bell, Predicting the location and
number of faults in large software systems, Transactions on Software
Engineering (TSE) 31 (4) (2005) 340–355.

[33] A. Schröter, T. Zimmermann, A. Zeller, Predicting component
failures at design time, in: International symposium on Empirical
software engineering, 2006, pp. 18–27.

[34] S. S. Rathore, S. Kumar, Predicting number of faults in software
system using genetic programming, Procedia Computer Science 62
(2015) 303–311.

[35] L. Pascarella, F. Palomba, A. Bacchelli, Re-evaluating method-level
bug prediction, in: International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2018, pp. 592–601.

[36] F. Zhang, A. E. Hassan, S. McIntosh, Y. Zou, The use of summation
to aggregate software metrics hinders the performance of defect
prediction models, Transactions on Software Engineering (TSE)
43 (5) (2016) 476–491.

[37] J. Johnson, S. Lubo, N. Yedla, J. Aponte, B. Sharif, An empiri-
cal study assessing source code readability in comprehension, in:
International Conference on Software Maintenance and Evolution
(ICSME), 2019, pp. 513–523.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 18 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

[38] D. Landman, A. Serebrenik, J. Vinju, Empirical analysis of the rela-
tionship between cc and sloc in a large corpus of java methods, in:
International Conference on Software Maintenance and Evolution,
2014, pp. 221–230.

[39] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez,
D. Poshyvanyk, R. Oliveto, Automatically assessing code under-
standability: How far are we?, in: International Conference on Au-
tomated Software Engineering (ASE), 2017, pp. 417–427.

[40] E. Giger, M. D’Ambros, M. Pinzger, H. C. Gall, Method-level
bug prediction, in: International Symposium on Empirical Software
Engineering and Measurement, 2012, pp. 171–180.

[41] F. Grund, S. A. Chowdhury, N. C. Bradley, B. Hall, R. Holmes,
Codeshovel: Constructing method-level source code histories, in:
International Conference on Software Engineering (ICSE), 2021, pp.
1510–1522.

[42] L. Pascarella, F. Palomba, A. Bacchelli, On the performance of
method-level bug prediction: A negative result, Journal of Systems
and Software 161.

[43] T. Shippey, T. Hall, S. Counsell, D. Bowes, So you need more
method level datasets for your software defect prediction? voilà!,
ESEM ’16, 2016.

[44] S. Chowdhury, R. Holmes, A. Zaidman, R. Kazman, Revisiting the
debate: Are code metrics useful for measuring maintenance effort?,
Empirical Software Engineering 27 (6) (2022) 1–31.

[45] R. Mo, S. Wei, Q. Feng, Z. Li, An exploratory study of bug prediction
at the method level, Inf. Softw. Technol. 144 (C).

[46] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol, An ex-
ploratory study of the impact of antipatterns on class change- and
fault-proneness, Empirical software engineering : an international
journal 17 (3) (2012) 243–275.

[47] R. M. Bell, T. J. Ostrand, E. J. Weyuker, Does measuring code
change improve fault prediction?, in: Proceedings of the 7th Inter-
national Conference on Predictive Models in Software Engineering,
Promise ’11, 2011.

[48] R. Moser, W. Pedrycz, G. Succi, Analysis of the reliability of a subset
of change metrics for defect prediction, in: Proceedings of the Sec-
ond ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’08, 2008, p. 309–311.

[49] G. R. Choudhary, S. Kumar, K. Kumar, A. Mishra, C. Catal,
Empirical analysis of change metrics for software fault prediction,
Computers & Electrical Engineering 67 (2018) 15–24.

[50] A. G. Koru, D. Zhang, K. El Emam, H. Liu, An investigation into the
functional form of the size-defect relationship for software modules,
Transactions on Software Engineering (TSE) 35 (2) (2008) 293–304.

[51] F. Zhang, A. E. Hassan, S. McIntosh, Y. Zou, The use of summation
to aggregate software metrics hinders the performance of defect
prediction models, Transactions on Software Engineering (TSE)
43 (5) (2017) 476–491.

[52] T. Zimmermann, R. Premraj, A. Zeller, Predicting defects for
eclipse, in: Third International Workshop on Predictor Models in
Software Engineering, 2007, pp. 9–9.

[53] D. Landman, A. Serebrenik, E. Bouwers, J. J. Vinju, Empirical
analysis of the relationship between cc and sloc in a large corpus
of java methods and c functions, Journal of Software: Evolution and
Process 28 (7) (2016) 589–618.

[54] R. K. Bandi, V. K. Vaishnavi, D. E. Turk, Predicting mainte-
nance performance using object-oriented design complexity metrics,
Transactions on Software Engineering (TSE) 29 (1) (2003) 77–87.

[55] V. Antinyan, M. Staron, W. Meding, P. Österström, E. Wikstrom,
J. Wranker, A. Henriksson, J. Hansson, Identifying risky areas of
software code in agile/lean software development: An industrial
experience report, in: Conference on Software Maintenance, Reengi-
neering, and Reverse Engineering (CSMR-WCRE), 2014, pp. 154–
163.

[56] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction, in: International conference on Software engineering,
2008, pp. 181–190.

[57] B. Caglayan, A. Bener, S. Koch, Merits of using repository metrics
in defect prediction for open source projects, in: Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and
Development, 2009, pp. 31–36.

[58] M. Alshayeb, W. Li, An empirical validation of object-oriented
metrics in two different iterative software processes, Transactions
on Software Engineering (TSE) 29 (11) (2003) 1043–1049.

[59] K. El Emam, S. Benlarbi, N. Goel, S. N. Rai, The confounding effect
of class size on the validity of object-oriented metrics, Transactions
on Software Engineering (TSE) 27 (7) (2001) 630–650.

[60] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, T. Dybå, Quan-
tifying the effect of code smells on maintenance effort, Transactions
on Software Engineering (TSE) 39 (8) (2012) 1144–1156.

[61] S. A. Chowdhury, G. Uddin, R. Holmes, An empirical study on
maintainable method size in java, in: Proceedings of the 19th In-
ternational Conference on Mining Software Repositories, 2022, pp.
252–264.

[62] H. Alsolai, M. Roper, D. Nassar, Predicting software maintain-
ability in object-oriented systems using ensemble techniques, in:
2018 IEEE International Conference on Software Maintenance and
Evolution, 2018, pp. 716–721.

[63] V. Basili, L. Briand, W. Melo, A validation of object-oriented
design metrics as quality indicators, IEEE Transactions on Software
Engineering 22 (10) (1996) 751–761.

[64] C. Pornprasit, C. K. Tantithamthavorn, Deeplinedp: Towards a deep
learning approach for line-level defect prediction, IEEE Transactions
on Software Engineering 49 (1) (2023) 84–98.

[65] E. Shihab, A. E. Hassan, B. Adams, Z. M. Jiang, An industrial study
on the risk of software changes, in: International Symposium on the
Foundations of Software Engineering, 2012, pp. 1–11.

[66] H. Zhang, H. B. K. Tan, An empirical study of class sizes for large
java systems, in: 14th Asia-Pacific Software Engineering Conference
(APSEC’07), IEEE, 2007, pp. 230–237.

[67] F. Servant, J. A. Jones, Fuzzy fine-grained code-history analysis, in:
International Conference on Software Engineering (ICSE), 2017, pp.
746–757.

[68] D. Steidl, B. Hummel, E. Juergens, Incremental origin analysis of
source code files, in: Proceedings of the 11th Working Conference
on Mining Software Repositories, 2014, pp. 42–51.

[69] S. Chowdhury, G. Uddin, H. Hemmati, R. Holmes, Method-level
bug prediction: Problems and promises, ACM Trans. Softw. Eng.
Methodol.Just Accepted.

[70] D. Steidl, F. Deissenboeck, How do java methods grow?, in: Inter-
national Working Conference on Source Code Analysis and Manip-
ulation (SCAM), 2015, pp. 151–160.

[71] D. Romano, M. Pinzger, Using source code metrics to predict
change-prone java interfaces, in: 2011 27th IEEE international con-
ference on software maintenance (ICSM), 2011, pp. 303–312.

[72] R. Abbas, F. A. Albalooshi, M. Hammad, Software change prone-
ness prediction using machine learning, in: 2020 international con-
ference on innovation and intelligence for informatics, computing
and technologies (3ICT), 2020, pp. 1–7.

[73] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, A. De Lu-
cia, On the diffuseness and the impact on maintainability of code
smells: a large scale empirical investigation, in: Proceedings of the
40th International Conference on Software Engineering, 2018, pp.
482–482.

[74] Y. Zhou, B. Xu, H. Leung, L. Chen, An in-depth study of the
potentially confounding effect of class size in fault prediction, Trans-
actions on Software Engineering and Methodology 23 (1) (2014) 1–
51.

[75] S. M. Olbrich, D. S. Cruzes, D. I. Sjøberg, Are all code smells
harmful? a study of god classes and brain classes in the evolution of
three open source systems, in: 2010 IEEE international conference
on software maintenance, IEEE, 2010, pp. 1–10.

[76] K. Yamashita, C. Huang, M. Nagappan, Y. Kamei, A. Mockus, A. E.
Hassan, N. Ubayashi, Thresholds for size and complexity metrics:
A case study from the perspective of defect density, in: 2016 IEEE

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 19 of 21



Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

international conference on software quality, reliability and security
(QRS), 2016, pp. 191–201.

[77] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, D. Cok,
Local vs. global models for effort estimation and defect prediction,
in: International Conference on Automated Software Engineering
(ASE), 2011, pp. 343–351.

[78] C. Lewis, R. Ou, Bug prediction at Google, http://google-engtools.
blogspot.com/2011/12/bug-prediction-at-google.html, [Online; last
accessed 01-Sep-2022].

[79] S. Banitaan, K. Daimi, Y. Wang, M. Akour, Test case selection
using software complexity and volume metrics, in: Proceedings of
the International Conference on Software Engineering and Data
Engineering (SEDE)., 2015, pp. 12–14.

[80] H. Cervantes, R. Kazman, Software archinaut: a tool to understand
architecture, identify technical debt hotspots and manage evolution,
in: Proceedings of the 3rd International Conference on Technical
Debt, 2020, pp. 115–119.

[81] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, H. Fang, On the lack
of consensus among technical debt detection tools, in: International
Conference on Software Engineering: Software Engineering in Prac-
tice, 2021, pp. 121–130.

[82] K. Herzig, A. Zeller, The impact of tangled code changes, in: Work-
ing Conference on Mining Software Repositories (MSR), 2013, pp.
121–130.

[83] D. Matter, A. Kuhn, O. Nierstrasz, Assigning bug reports using a
vocabulary-based expertise model of developers, in: International
working conference on mining software repositories, 2009, pp. 131–
140.

[84] I. Scholtes, P. Mavrodiev, F. Schweitzer, From aristotle to ringel-
mann: a large-scale analysis of team productivity and coordination
in open source software projects, Empirical software engineering :
an international journal 21 (2) (2016) 642–683.

[85] Y. Shin, A. Meneely, L. Williams, J. A. Osborne, Evaluating com-
plexity, code churn, and developer activity metrics as indicators
of software vulnerabilities, Transactions on Software Engineering
(TSE) 37 (6) (2010) 772–787.

[86] D. Ståhl, A. Martini, T. Mårtensson, Big bangs and small pops: On
critical cyclomatic complexity and developer integration behavior,
in: 2019 IEEE/ACM 41st International Conference on Software
Engineering: (ICSE-SEIP), 2019, pp. 81–90.

[87] D. Kawrykow, M. P. Robillard, Non-essential changes in version
histories, in: International Conference on Software Engineering
(ICSE), 2011, pp. 351–360.

[88] B. Ray, M. Nagappan, C. Bird, N. Nagappan, T. Zimmermann, The
uniqueness of changes: Characteristics and applications, in: Working
Conference on Mining Software Repositories, 2015, pp. 34–44.

[89] Y. Zhou, B. Xu, H. Leung, On the ability of complexity metrics
to predict fault-prone classes in object-oriented systems, Journal of
Systems and Software 83 (4) (2010) 660 – 674.

[90] D. Kafura, G. R. Reddy, The use of software complexity metrics
in software maintenance, Transactions on Software Engineering
(TSE) (3) (1987) 335–343.

[91] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič, Software fault
prediction metrics: A systematic literature review, Information and
Software Technology 55 (8) (2013) 1397 – 1418.

[92] O. Dabic, E. Aghajani, G. Bavota, Sampling projects in GitHub
for MSR studies, in: International Conference on Mining Software
Repositories (MSR), 2021, p. To appear.
URL https://arxiv.org/abs/2103.04682

[93] H. Borges, A. Hora, M. T. Valente, Understanding the factors that
impact the popularity of GitHub repositories, in: International Con-
ference on Software Maintenance and Evolution (ICSME), 2016, pp.
334–344.

[94] B. Ray, D. Posnett, V. Filkov, P. Devanbu, A large scale study of
programming languages and code quality in github, in: International
Symposium on Foundations of Software Engineering, 2014, pp.
155–165.

[95] E. D. Berger, C. Hollenbeck, P. Maj, O. Vitek, J. Vitek, On the impact
of programming languages on code quality: a reproduction study,
Transactions on Programming Languages and Systems (TOPLAS)
41 (4) (2019) 1–24.

[96] I. Etikan, S. A. Musa, R. S. Alkassim, Comparison of convenience
sampling and purposive sampling, American journal of theoretical
and applied statistics 5 (1) (2016) 1–4.

[97] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, The promises and perils of mining github, in: Proceed-
ings of the 11th working conference on mining software repositories,
2014, pp. 92–101.

[98] A. Zaidman, B. Van Rompaey, S. Demeyer, A. Van Deursen, Mining
software repositories to study co-evolution of production & test
code, in: International Conference on Software Testing, Verification,
and Validation (ICST), 2008, pp. 220–229.

[99] L. S. Pinto, S. Sinha, A. Orso, Understanding myths and realities of
test-suite evolution, in: International Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2012, pp. 1–11.

[100] V. Antinyan, M. Staron, J. Derehag, M. Runsten, E. Wikström,
W. Meding, A. Henriksson, J. Hansson, Identifying complex func-
tions: By investigating various aspects of code complexity, in: Sci-
ence and Information Conference (SAI), 2015, pp. 879–888.

[101] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, P. De-
vanbu, On the" naturalness" of buggy code, in: International Con-
ference on Software Engineering (ICSE), 2016, pp. 428–439.

[102] A. Mockus, L. G. Votta, Identifying reasons for software changes
using historic databases., in: icsm, 2000, pp. 120–130.

[103] T. Zimmermann, N. Nagappan, Predicting defects using network
analysis on dependency graphs, in: International conference on
Software engineering, 2008, pp. 531–540.

[104] J. Jiarpakdee, C. Tantithamthavorn, A. E. Hassan, The impact of cor-
related metrics on defect models, arXiv preprint arXiv:1801.10271.

[105] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures, Chapman and Hall/CRC, 2003.

[106] The anderson-darling test for normality, Journal of quality technol-
ogy 30 (3) (1998) 298–299.

[107] L. Inozemtseva, R. Holmes, Coverage is not strongly correlated
with test suite effectiveness, in: International conference on software
engineering, 2014, pp. 435–445.

[108] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other sur-
veys, in: Annual meeting of the Florida Association of Institutional
Research, Vol. 13, 2006.

[109] J. Cohen, Statistical power analysis for the behavioral sciences,
Academic press, 2013.

[110] M. Hess, J. Kromrey, Robust confidence intervals for effect sizes: A
comparative study of cohen’s d and cliff’s delta under non-normality
and heterogeneous variances, 2004.

[111] A. Agrawal, T. Menzies, Is" better data" better than" better data
miners"?, in: International Conference on Software Engineering
(ICSE), 2018, pp. 1050–1061.

[112] D. P. Doane, L. E. Seward, Measuring skewness: a forgotten statis-
tic?, Journal of statistics education 19 (2).

[113] G. Robles, I. Herraiz, D. M. Germán, D. Izquierdo-Cortázar, Mod-
ification and developer metrics at the function level: Metrics for
the study of the evolution of a software project, in: International
Workshop on Emerging Trends in Software Metrics (WETSoM),
2012, pp. 49–55.

[114] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, D. Poshyvanyk, An empirical investigation into the
nature of test smells, in: International Conference on Automated
Software Engineering, 2016, pp. 4–15.

[115] J. Rosenberg, Some misconceptions about lines of code, in: Proceed-
ings international software metrics symposium, 1997, pp. 137–142.

[116] C. Andersson, P. Runeson, A replicated quantitative analysis of fault
distributions in complex software systems, Transactions on Software
Engineering (TSE) 33 (5) (2007) 273–286.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 20 of 21

http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
https://arxiv.org/abs/2103.04682
https://arxiv.org/abs/2103.04682
https://arxiv.org/abs/2103.04682


Impact of Methodological Choices on the Analysis of Code Metrics and Maintenance

[117] M. A. Kabir, J. W. Keung, K. E. Bennin, M. Zhang, Assessing the
significant impact of concept drift in software defect prediction,
in: 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), Vol. 1, 2019, pp. 53–58.

[118] S. Wang, J. Wang, J. Nam, N. Nagappan, Continuous software bug
prediction, 2021.

[119] S. Herbold, A. Trautsch, B. Ledel, A. Aghamohammadi, T. A.
Ghaleb, K. K. Chahal, T. Bossenmaier, B. Nagaria, P. Makedonski,
M. N. Ahmadabadi, et al., A fine-grained data set and analysis of
tangling in bug fixing commits, Empirical Software Engineering
27 (6).

[120] C. Gini, Measurement of inequality of incomes, The Economic
Journal 31 (121) (1921) 124–126.

[121] A. B. Atkinson, et al., On the measurement of inequality, Journal of
economic theory 2 (3) (1970) 244–263.

[122] C. E. Shannon, A mathematical theory of communication, Mobile
computing and communications review 5 (1) (2001) 3–55.

[123] E. M. Hoover, The measurement of industrial localization, The
Review of Economic Statistics (1936) 162–171.

[124] B. Vasilescu, A. Serebrenik, M. Van den Brand, By no means: A
study on aggregating software metrics, in: Proceedings of the 2nd
International Workshop on Emerging Trends in Software Metrics,
2011, pp. 23–26.

[125] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, X. Yang, Perceptions,
expectations, and challenges in defect prediction, Transactions on
Software Engineering (TSE) 46 (11) (2018) 1241–1266.

[126] M. Kondo, D. M. German, O. Mizuno, E.-H. Choi, The impact of
context metrics on just-in-time defect prediction, Empirical Software
Engineering 25 (1) (2020) 890–939.

[127] M. Greiler, A. Zaidman, A. Van Deursen, M.-A. Storey, Strategies
for avoiding text fixture smells during software evolution, in: Work-
ing Conference on Mining Software Repositories (MSR), 2013, pp.
387–396.

[128] A. G. Koru, H. Liu, Identifying and characterizing change-prone
classes in two large-scale open-source products, Journal of Systems
and Software 80 (1) (2007) 63–73.

[129] S. Wang, T. Liu, J. Nam, L. Tan, Deep semantic feature learning for
software defect prediction, Transactions on Software Engineering
(TSE) 46 (12) (2018) 1267–1293.

[130] H. Osman, A. Chis, C. Corrodi, M. Ghafari, O. Nierstrasz, Exception
evolution in long-lived Java systems, in: Proceedings of the Interna-
tional Conference on Mining Software Repositories, 2017, pp. 302–
311.

[131] S. McIntosh, Y. Kamei, Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction, Transac-
tions on Software Engineering (TSE) 44 (5) (2017) 412–428.

[132] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, T. Zimmermann, Local versus global lessons for defect
prediction and effort estimation, Transactions on Software Engineer-
ing (TSE) 39 (6) (2012) 822–834.

[133] C. Faragó, P. Hegedűs, R. Ferenc, Cumulative code churn: Impact
on maintainability, in: International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2015, pp. 141–150.

[134] S. N.C., S. Majumder, T. Menzies, Early life cycle software defect
prediction. why? how?, in: International Conference on Software
Engineering (ICSE), 2021, pp. 448–459.

[135] F. Zhang, A. Mockus, Y. Zou, F. Khomh, A. E. Hassan, How does
context affect the distribution of software maintainability metrics?,
in: International Conference on Software Maintenance, 2013, pp.
350–359.

Syed, Shaiful & Reid: Preprint submitted to Elsevier Page 21 of 21


