
Approximate Structural Context Matching: An
Approach to Recommend Relevant Examples

Reid Holmes, Robert J. Walker, Member, IEEE, and Gail C. Murphy, Member, IEEE Computer Society

Abstract—When coding to an application programming interface (API), developers often encounter difficulties, unsure of which class

to subclass, which objects to instantiate, and which methods to call. Example source code that demonstrates the use of the API can

help developers make progress on their task. This paper describes an approach to provide such examples in which the structure of the

source code that the developer is writing is matched heuristically to a repository of source code that uses the API. The structural

context needed to query the repository is extracted automatically from the code, freeing the developer from learning a query language

or from writing their code in a particular style. The repository is generated automatically from existing applications, avoiding the need

for handcrafted examples. We demonstrate that the approach is effective, efficient, and more reliable than traditional alternatives

through four empirical studies.

Index Terms—API usage, structural context, heuristic search, Strathcona, example recommendation.

Ç

1 INTRODUCTION

FRAMEWORKS and libraries allow software developers to

create full-featured applications with less effort. Achiev-
ing this benefit requires a developer to use an application

programming interface (API) appropriately: subclassing

particular classes, instantiating appropriate objects, and

calling methods according to established protocols. Some

constraints on API use are described in design documents;

others are specified through source code examples crafted

specifically to demonstrate particular features of the

framework or library. It is seldom the case that the
documentation and examples provided with a large

framework or library are sufficient for a developer to use

its API effectively. All too often, developers become lost

when trying to use an API, unsure of how to make progress

on a programming task.
To help developers find their way, researchers have

advocated the establishment of example repositories to
house examples of an API’s use (e.g., [16], [18], [20]). These
approaches differ in the means that a developer uses to
retrieve relevant examples from the repository: Developers
must either learn a new query language [7], have an idea of
what kind of example would likely help them with their
task [14], [13], or write their source in a style that conforms
to that of the example repository [20]. All of these
approaches require a substantial investment on the part of
the developer to locate and incorporate examples from the
repository.

To ease the burden on the developer, we have developed
an approach that uses the structure of the source code
under development to find relevant examples in a
repository. We first extract a set of structural facts about
the context of an indicated source code fragment. We then
use this automatically formed structural context to search a
source code repository heuristically for examples with
similar structural context. The best results from the search
are returned to the developer for consideration.

Our approach has two key differences from previous
work. First, the repository automatically stores source code
in a form whereby task-specific examples can be generated
as needed, rather than providing generic examples or
requiring their manual creation and insertion into the
repository. Second, the developer need not learn a new
query language, nor must the developer code to particular
standards to enable a search to be conducted. Instead, the
structural context that is used to form a query is extracted
automatically from a developer-indicated source code
fragment; for example, the fragment of interest can be
indicated by a developer highlighting the code in an
integrated development environment (IDE).

To investigate our approach, we have built the Strathcona
tool. The client portion of Strathcona, a plug-in for the
Eclipse IDE,1 extracts the structural context of a fragment of
selected Java source code for which the developer would
like to see examples of use. The server portion of Strathcona
houses the repository within which it searches for similar
structural contexts using an extensible set of structural
similarity heuristics. The server forms examples from the
similar code that it finds. These examples are returned to
the developer for perusal. Each example consists of three
parts: a graphical overview illustrating the structural
similarity to the queried fragment, a textual description of
why the example was selected, and source code with
structural details highlighted that are similar to the queried

952 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

. R. Holmes and R.J. Walker are with the Department of Computer Science,
University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
T2N 1N4. E-mail: {rtholmes, rwalker}@cpsc.ucalgary.ca.

. G.C. Murphy is with the Department of Computer Science, University of
British Columbia, 201-2366 Main Mall, Vancouver, British Columbia,
Canada V6T 1Z4. E-mail: murphy@cs.ubc.ca.

Manuscript received 10 Mar. 2006; revised 29 Aug. 2006; accepted 13 Sept.
2006; published online 14 Nov. 2006.
Recommended for acceptance by W. Griswold and B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0062-0306. 1. http://eclipse.org (last accessed: 9 June 2006).

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

fragment. The graphical overview and textual rationale
description can be used by the developer to quickly decide
whether the recommended example is worth examining
more closely.

We have performed a series of empirical studies to
evaluate the approach and the tool. The results of these
studies provide evidence that 1) developers can recognize
and use examples located by Strathcona to complete
development tasks, 2) the approach provides better results
—without needing to formulate explicit queries—than
traditional search tools, and 3) the approach is robust in
its ability to locate relevant examples for a range of queries.

The paper begins, in Section 2, with a scenario where
the use of an example recommendation tool would
benefit the developer. Section 3 compares our approach
to other efforts. Section 4 describes the concept of
approximate structural context matching and how this
concept has been instantiated in a concrete tool, called
Strathcona, for recommending relevant examples. Section
5 presents our evaluation. Remaining issues and future
work are discussed in Section 6.

2 SAMPLE SCENARIO

The user interface of the Eclipse IDE includes a status line
that reports information about the state of the environment
to the user. For example, when the user selects some items
from a tree view in Eclipse, the status line shows the
number of selected items (Fig. 1). Consider a developer who
is writing an extension for the Eclipse environment, called a
plug-in, and who wants to display a message on the status
line from within their view. The first place a developer
might look for help with this task is the Eclipse documenta-
tion. Checking this resource, the developer finds a reference
to an interface called IStatusLineManager. Looking at
the API documentation for IStatusLineManager (Fig. 2),
the developer finds the seemingly appropriately named
method setMessage(String). The API documentation
mentions that there is a concrete implementation Status-

LineManager but does not provide any clues as to how
to obtain an existing instance of that type. The developer
attempts to implement a method, named update-

StatusMessage (String msg), that calls IStatus-

LineManager.setMessage(msg). Unfortunately, this
method will not compile because IStatusLineManager
is an interface type, but setMessage(String) is an
instance method. The API documentation mentions that

there is a concrete class StatusLineManager but contains
no obvious clues as to how to obtain an existing object on
which to call setMessage(String). At this point, the
developer becomes lost, uncertain of the next step needed to
complete the task.

This scenario describes a conceptually simple task of
updating a status line. However, even this simple task
requires knowledge about the interaction between several
types of the framework, including ViewPart, IViewSite,
IActionBars, and IStatusLineManager. This interac-
tion is not described in the Eclipse documentation.2

Although the interactions may be discovered using the
code completion features in Eclipse, the correct sequence of
calls is difficult to find as there are a total of 79 methods
available across the four classes.

Strathcona can help in this situation. As shown in Fig. 3a,
the developer highlights some code they have written and
chooses Query Strathcona from the context menu to request
similar examples. The client portion of Strathcona extracts
the structural context of the source code fragment that the
developer has selected. The structural context comprises the
structural details about the selected code and its containing
class. In this case, the structural context will contain the
facts that the selected code calls IStatusLineManager.

setMessage(String), that it uses IStatusLine-

Manager and String, and that its containing class inherits
from ViewPart. The structural context is sent to the server
portion of Strathcona, which returns 10 structurally related
examples. Each of these examples consists of three parts: a
code fragment, a structural description of the code frag-
ment, and a rationale explaining the relevance of the code
fragment to the problem the developer is facing.

Fig. 3b shows a graphical view of the relevant structure
for one of the returned examples. The rationale for this
example shows that it was selected because its code calls the
IStatusLineManager.setMessage(String) method,
uses IStatusLineManager, and extends ViewPart

(Fig. 3c). The developer requests the code for the example,
and Strathcona highlights the call chain getView-

Site().getActionBars().getStatusLineMana-

ger().setMessage(msg) as shown in Fig. 3d. The
developer assesses this example as useful and attempts to
use it by directly copying the statement into their method.
Testing this code, the developer finds that they have
completed their task.

3 RELATED WORK

We describe previous efforts in three areas related to our
structural context matching approach: other efforts aimed at
easing the use of a complex framework or API, efforts

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 953

Fig. 1. An example of the behavior of the Eclipse status line.

Fig. 2. API documentation for IStatusLineManager.

2. As of Version 3.2M5.

aimed at finding code to reuse, and efforts aimed at
detecting similar code.

3.1 API and Framework Helpers

Several researchers have suggested forms of documentation
to ease the use of frameworks (e.g., [3], [6], [12]). However,
such an approach requires a significant amount of effort on
the part of the original developer to document the frame-
work for the various ways in which a large framework may
be used. To reduce this overhead, others have suggested
encoding information about the intended use of the frame-
work within the framework itself. For example, hooks [5]
concisely enumerate the constraints that must be honored
by the developer, the steps they must follow to use a hook,
and the effect that using a hook will have on the framework
itself. Although hooks are likely easier to evolve with a
framework, they must still be defined manually by the
framework developer.

In the Reuse View Matcher (RVM), Rosson and Carroll
took the approach of providing a set of views within a
development environment to describe how an application
makes use of a particular class in a framework [19]. This
active form of documentation relies on hand-crafted
examples that can be time-consuming to create, that can
become out-of-date with the code, and that may not
describe uses of all of the classes in the framework.

One way to overcome the need to write and access
documentation, whether external or internal to the API, is

through the automated provision of examples, as in our

approach. Jungloids [13] can help in the particular case of
determining a possible call chain between a source type and

target type. A repository of past uses of the API is mined to
help guide an automated search for a call chain that has
previously been used. In contrast to our approach, jungloids

do not infer the developer’s context, but rather require a
specific source and target type to be identified. Detailed

examples are not returned, merely the “best” call chain that
the tool can automatically determine; thus, the developer
cannot use that technique to discover additional issues that

have lead others to choose particular call chains.
The CodeFinder system addressed the problem of

formulating an appropriate query to a repository of

examples by attempting to help developers construct useful

queries [7]. The developer formulates a simple text query,

executes the query, and is then presented with a list of

terms in the repository that are similar to those in the query.

Depending on the terms and options selected by the

developer, a different set of restrictions is presented to

help narrow the search space to a specific class of examples

of interest. In contrast to CodeFinder, our approach aims to

remove the step of formulating the query by creating the

query automatically.
Other tools, such as Component Rank [11] and CodeWeb

[14], [15], use software structure to determine which parts of

a framework are frequently used; knowing which parts are

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Querying Strathcona for examples, and viewing results. (a) Querying Strathcona. (b) Graphical view of example’s similarity to the queried

source. (c) Textual view of rationale for why the example was chosen. (d) Source view.

frequently used might help a developer determine where to
begin exploring the framework to perform a desired

function. Component Rank aims to find sections of code
that are good targets for componentization, rather than
finding examples specific to a developer’s task. CodeWeb

mines a repository for patterns of API use, inferring
association rules (e.g., if “A.m1()” is called then
“B.m2()” tends to be called as well); CodeWeb presents

its results in a browser-based fashion, requiring that the
developer have an idea of what kinds of association rules
are of interest. In contrast, our approach targets developers

who have become lost in a specific task. Our approach also
does not return examples based on their frequency in the
repository, but solely on their structural similarity to the

source in the developer’s context; as a result, examples that
use an API in a unique way can be located when they are
most similar to the developer’s context.

3.2 Finding Code to Reuse

A related problem to helping a developer use an API is
finding code that already exists in a library to meet a

desired need.
The signature matching approach of Zaremski and Wing

[22], for instance, attempts to find library functions to match

a need by comparing the signature of a function to be
written with signatures of functions in a library. The
similarity of signatures is but one structural property of

potential interest to a developer seeking relevant examples;
our approach generalizes to structural properties other than
signatures.

The CodeBroker [20], [21] system queries a repository
automatically after each comment or method signature
written by a developer. The queries made to the repository

are based on these comments and method signatures. To
retrieve matches, a developer must write comments that
explain the functionality of the software in terms similar to

that of the repository code [20]. When a developer follows
this process, CodeBroker may be able to match a more
diverse set of examples than our structural context

approach. However, the effectiveness of the CodeBroker
approach may be limited by the need for and difficulty of
writing appropriate comments. In comparison, our ap-

proach can apply to any code and any framework
irrespective of coding conventions since all source code
incorporates structure.

The Automatic Method Completion technique [8] uses
machine learning techniques to complete a method body
based upon the developer’s current context. The approach

represents the programming language constructs and
named identifiers used in the method as a multidimen-
sional vector. This vector is compared to precomputed

vectors, for example, code on a server, and the best
completion for the method of interest is returned. Our
approach differs in returning multiple possible examples

for arbitrary blocks of code based on structurally similar
features.

Hipikat [4] can recommend relevant development
artifacts from a project’s history to a developer. One kind
of artifact that can be recommended is source revisions

associated with a past change task; these revisions can be
considered as an example. Our approach extends the kinds
of examples that can be recommended to a developer by
drawing the examples from current uses of a framework,
rather than relying solely on the past development history
of the framework itself.

3.3 Detecting Structurally Similar Code

To support the detection of code clones and to support
program evolution activities, several efforts have consid-
ered techniques to search for structurally similar code. The
CloneDr detector of Baxter et al., for example, includes an
algorithm for comparing subtrees of AST information [2].
Paul’s SCRUPLE system provides a pattern language to
describe the structural features of the code of interest to
find, such as the code having nested for-loops [17]. The
efforts in these areas are aimed at finding large segments of
code that are near-identical at a fine-grained level of detail
(such as character sequences). Our approach differs in
relaxing the degree to which protoexamples must match an
indicated source code fragment, concentrating on coarser-
grained details (such as the presence of some method calls).
In considering coarser-grained details, our approach is
more similar to Basit and Jarzabek’s technique for detecting
the presence of structural clones, “design solutions repeat-
edly applied by programmers to solve similar problems”
[1]. In contrast, our approach forms a structural model from
a developer’s context to search for relevant examples in the
repository.

4 APPROXIMATE STRUCTURAL CONTEXT

MATCHING AND THE STRATHCONA TOOL

In this section, we describe the concept of approximate
structural context matching and its realization in the
Strathcona example recommendation tool in terms of the
main steps involved in determining relevant examples (see
Fig. 4). Section 4.1 describes the concept of structural
context and how the Strathcona client extracts it from
source code selected by the developer; this structural
context is sent to the Strathcona server as a query. The
server contains a repository of sample source code indexed
by structural context facts; the structure of this repository
and how it is initially populated are described in Section 4.2.
The structural context sent to the server is used to
approximately match sample source code in the repository,
as described in Section 4.3. The repository does not contain
ready-made examples—examples must be formed from the
sample source code that has been approximately matched
(called protoexamples), as described in Section 4.4. These
formed examples are returned to the Strathcona client for
presentation to and interpretation by the developer, as
explained in Section 4.5. Strathcona’s runtime performance
is described in Section 4.6. In each section, we describe the
behavior of Strathcona through our sample scenario of
Section 2.

4.1 Client: Determining Structural Context

As a first step, the developer must select some fragment of
source code for Strathcona to find relevant examples.
Selection is performed by highlighting characters in the

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 955

Eclipse Java source editor using Eclipse’s standard manner

of interaction.3 The developer then requests examples from

Strathcona via a context menu option.
The Strathcona client extracts the structural context of the

selected code. The structural context is a partial character-

ization of the content of the selected code and its place

within the greater context of its system. We realize

structural contexts as sets of structural facts; the following

kinds of facts are extracted by the Strathcona client:

. the method signatures declared within the fragment;

. the names of the types that declare each of those
methods, called the declaring types,

. the names and fully qualified types of the fields
declared by the declaring types,

. the fully qualified types, methods, and fields
referenced by the fragment, and

. the supertypes of the declaring types.

For our sample scenario, the Strathcona client extracts

the following structural facts:

. declaring type is View,

. declares method updateStatusMessage(java.

lang.String),
. extends org.eclipse.ui.part.ViewPart,
. calls org.eclipse.jface.action.IStatus-

LineManager.setMessage(java.lang.

String),

. uses org.eclipse.jface.action.IStatus-

LineManager, and
. uses java.lang.String.

Some of these facts may not be well-defined if the source
code is not yet compilable, i.e., when the source code is still
being written. For example, import statements may be
missing or ambiguous so that types cannot be resolved, or
as yet undeclared methods may be called. We have taken
the pragmatic approach of resolving references to the extent
provided by the Eclipse Java Development Tools. For
instance, in our sample scenario, the code includes a call
to an operation on the Java interface type org.eclipse.

jface.action.IStatusLineManager; this fact is in-
cluded as-is to see if it matches anything in the repository,
rather than attempting to infer how the polymorphic call
may resolve.4

The Strathcona client packages the structural context as
an XML document and sends it to the Strathcona server as a
request for relevant examples.

4.2 Server: Repository Structure

The Strathcona server contains a repository of sample
source code and a database of structural facts about
portions of that source code. We assume examples that
are helpful for the developer querying the repository will
usually occur within a single method.5 Thus, the method
declarations within the sample code serve as “protoexam-
ples” from which relevant examples can be constructed, as
described in Section 4.4.

Before Strathcona can be used, its repository must be
populated with sample source code that uses the API(s) of
interest. There are two restrictions placed on the code used
to populate the repository: The code must be parsable by
the Eclipse compiler, and the code should represent good
usage of the API(s). The code may be from multiple
applications.

Sample source code is loaded into the repository using
an Eclipse plug-in. This plug-in walks the AST of the
provided code, extracting the structural contexts of all
method declarations (in the same manner that the Strathco-
na client extracts the structural context of a source fragment
highlighted by the developer, described in Section 4.1). The
facts from these structural contexts are stored in a
PostgreSQL relational database; each fact indirectly refers
to the method declaration which supports it. There are
several tables maintained within the database (see Fig. 5):
one each to track the projects contained in the repository,
type declarations, method declarations, field declarations,
method calls, field accesses, inheritance relationships, and
type usages. (This last table is maintained for performance
reasons, despite being derivable from the other facts in the
database.)

The database tables are fully indexed on the basis of the
attributes of the facts stored in them to provide fast search
for specific facts. Fact attributes are generally stored as
integer IDs instead of strings to avoid the proliferation of

956 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

3. In the current implementation, a selected fragment consists of
contiguous characters within a single file.

4. See Section 4.3 for a discussion of the implications of this design.
5. Undoubtedly, interesting examples will also occur at a larger-scale. A

different realization of approximate structural context matching would be
needed to locate those.

Fig. 4. Overview of the structure of Strathcona. Letters in parentheses

indicate the subsections in which the given interaction or component is

described. Return messages are not shown.

performance-degrading strings throughout the database.

For example, a method declaration would be recorded as a

fact (a row) within the method declaration table and

method declaration facts include three attributes: the

signature (a string), the type declaring the method (an ID

as a foreign key into the type declaration table), and the

method’s ID which is used as a foreign key in other tables.

4.3 Server: Locating Similar Protoexamples

When a query containing the structural context description

arrives at the Strathcona server, the server attempts to find

structurally similar code in the repository. Strathcona does

not attempt to match the structure exactly; structural details

that are unique to the developer’s application (e.g., the

developer-supplied subtypes) cannot be expected to exist in

the repository. Instead, Strathcona uses a set of heuristics to

find structurally relevant protoexamples.
The server passes the queried structural context inde-

pendently to each of a set of heuristics. Each heuristic must

implement its own concept of similarity between the

queried structural context and the structural contexts of

protoexamples (i.e., method declarations) in the repository;

typically, a given heuristic will emphasize some kinds of
facts and deemphasize others. Each heuristic returns a list
of protoexamples to the server. To improve performance,
the number of protoexamples returned is limited; each
heuristic sorts its list according to decreasing similarity to
the input structural context and returns, at most, the best
100 protoexamples. These protoexample lists are combined
into a single list and sorted in decreasing order of how
many heuristics returned each protoexample. The best
10 protoexamples are selected and used to form examples,
as explained in Section 4.4.6

Our Strathcona server defines four heuristics to match a
queried structural context to the structural contexts of
protoexamples stored in the repository. Our four heuristics
were developed iteratively using the source code of several
existing third-party plug-ins written for the Eclipse frame-
work. We posited a heuristic, took the source code for an
existing plug-in, deleted sections that used the Eclipse
framework, and tested the heuristic to see if any of the
returned results would have helped to fill-in the code that
we had deleted. Through this process, we refined the
heuristics to be as general as possible. Each heuristic uses
different facts from the structural context to locate matching
protoexamples.

INHERITS. This is the simplest of the heuristics. It locates
any protoexamples within the repository whose declaring
type extends the same type(s) as extended by the input
structural context. For our sample scenario, this heuristic
searches for method declarations that have ViewPart as a
supertype; Strathcona returns the 45 method declarations
that meet this restriction.

CALLS. This heuristic queries the repository for any
protoexamples that make the same method calls as
described by the queried structural context. We look for
protoexamples where as many method calls as possible can
be matched. We rank the returned protoexamples from this
heuristic in the order of the number of matching calls they
make. For our sample scenario, Strathcona returns the
63 method declarations that call IStatusLineManager.
setMessage(String).

USES. This heuristic is essentially a relaxation of the
CALLS heuristic. It considers the different types used by the
input structural context. A type is considered to be used in
situations where it is instantiated, a method is invoked on it,
one of its fields is referenced, it is the type of a referenced
field, or it is the type of a formal parameter. The
protoexamples returned by this heuristic are ordered by
the number of type usage facts matching the queried
structural context. For our sample scenario, the two uses
relationships in the queried structural context (with
String and IStatusLineManager) occur in 92,362 and
204 method declarations, respectively. However, there are
only 114 method declarations that use both types; the first7

100 of these latter method declarations are returned.

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 957

Fig. 5. The Strathcona data model.

6. These limits were chosen informally. The limit of 100 protoexamples
per heuristic is large enough that good protoexamples never appear to be
dropped, but small enough that performance is improved. The limit of
10 protoexamples returned to the client was chosen as a reasonable number
for the developer to quickly scan through and determine whether the
selected fragment will result in useful recommendations.

7. As defined by the PostgreSQL server implementation.

REFERENCES. This heuristic returns method declarations

that use the same field reference(s) as the queried structural

context. This heuristic was created because constants are

often more significant for their name than their type (which

is frequently just an int or a String). For our sample

scenario, the structural context does not reference any

fields, and this heuristic does not return any results.
Although each of the heuristics are run independently,

their results must be combined in order to rank and select

the most relevant matching protoexamples. The Strathcona

server ranks matched protoexamples according to the

number of heuristics that returned them; this means that

any particular protoexample can have a maximum score of

4 in the current implementation. For our sample scenario,

the top four method declarations (i.e., protoexamples) were

returned by three heuristics, while the next six were

returned by only two. This means that of the 45 results

from the INHERITS heuristic, the 63 from the CALLS

heuristic, and the 114 best results from the USES heuristic,

only four method declarations were matched by all three

heuristics and, as such, were ranked as most relevant.
The PostgreSQL query language provides efficient

queries that can simultaneously locate protoexamples

matching certain facts, sort these in order of decreasing

similarity, and select the top 100 protoexamples, all in a

single query. An example of the compound query used by

the USES heuristic is shown in Fig. 6. The IDs for String

and IStatusLineManager are found from the type

declaration table (typetable). Next, uses-facts involving

either of these types are located and stored in a results

table. The host attribute of these facts contains the ID of the

method declaration that uses one of these (target) types.

The uses-facts are then grouped by the method declaration

ID (host), the results are sorted in descending order of

how many matched uses-facts refer to the same host, and

the results are limited to the top 100 matches. The

method declaration IDs remaining in the results table

serve as protoexamples to be returned by the USES

heuristic. In early implementations of Strathcona, we found

that locating protoexamples with the multiple-queries

approach instead of the compound-query approach tended

to be up to 100 times slower, thereby eliminating interactive

rates of response.8 The compound-query approach has

implications for the formation of examples, as described in

the following section.

4.4 Server: Example Formation

Once the Strathcona server has selected the 10 most relevant
protoexamples, it must create examples from each to return
to the Strathcona client. From the perspective of the
Strathcona server, an example consists of an XML docu-
ment containing the rationale for why this protoexample
was selected (a set of strings), the structural facts of the
protoexample that are similar to those of the queried
structural context, and the signature of the method
declaration serving as a protoexample. These details are
returned to the Strathcona client for further processing and
display (see Section 4.5); the client can also then request the
source file from whence the protoexample came.

Rationales are required only to help the developer
understand why an example was recommended; therefore,
rationale determination can be delayed until the 10 most
relevant protoexamples have been determined. In practice,
this is more efficient (via the compound-query approach
described above) than the alternative of tracking rationales
for every matched protoexample.

For each of the 10 protoexamples, the server implemen-
tation requests rationales from each of the heuristics; this
request includes the protoexample and the queried struc-
tural context as arguments. The returned sets of strings are
unioned to provide the returned rationale for the example.
Each heuristic also returns the facts about the protoexample
that it considers similar to the queried structural context;
these are combined into an XML document to be returned
to the client.

In the current implementations of heuristics, each
rationale is a string representing a fact from the queried
structural context that is also supported by the selected
protoexample. Thus, the content of the set of structural facts
returned in the example and the content of the set of
rationales will be equivalent.9 In our sample scenario, the
USES heuristic returned 114 method declarations that used
both String and IStatusLineManager; the USES heur-
istic’s rationale for selecting these 114 method declarations
would consist of the two statements “Method uses type

IStatusLineManager” and “Method uses type

String.”10

An example of the PostgreSQL query used for determin-
ing rationales is shown in Fig. 7 for the USES heuristic. Each
uses-fact in the queried structural context would be tested
against the protoexample: uses-facts containing (target)
IDs corresponding to the types used in the queried
structural context (String or IStatusLineManager

here) and containing the (host) ID of the protoexample

958 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

8. The PostgreSQL query planner can optimize compound queries in a
way not possible when given many small queries in series.

9. Heuristics could be implemented to provide rationales of other forms,
so this redundancy is retained for the sake of flexibility.

10. In the implementation, these type names are actually fully qualified,
and the second statement indicates that String is a “secondary” type (one
with low specificity) as exemplified in Fig. 3c.

Fig. 6. The compound PostgreSQL query used by the USES heuristic for

the sample scenario.

Fig. 7. Rationale determination by the USES heuristic. This query is run

once for each uses-fact in the queried structural context.

would be queried as shown. If the size of the result of the
query were 0, the uses-fact would not match the proto-
example and would not be part of the rationale for why the
protoexample had been selected. If the size of the result of
the query were greater than 0, the uses-fact would be part of
the rationale, and the USES heuristic would add the string
“Method uses String” or “Method uses IStatus-

LineManager” to its returned rationale. An empty string
would be returned if all of these queries were of size 0. The
returned strings from all heuristics are concatenated and
added as the rationale for a recommended example.

4.5 Client: Example Presentation

The list of generated examples is returned to the Strathcona
client for presentation to the developer.

The Strathcona client provides a limited UML-like class
diagram representation (e.g., Fig. 3b) to help the developer
to quickly judge if a recommended example is worth
examining more closely. Since Strathcona does not attempt
to judge which facts in the queried structural context are
more important, recommended examples may be missing
facts that the developer considers crucial. This view
displays the structural facts of the returned example,
always including the declaring type of the example and
the name of the method declaration serving as the basis for
the example.

The developer can also view the textual rationale
description as a list of strings (e.g., Fig. 3c). In the current
implementation of heuristics, the structural facts added to
the example are equivalent in content to the strings
appearing in the rationale and, thus, the textual rationale
and graphical diagram encode the same knowledge.

If the developer wants to see the source code for the
example (i.e., if the developer considers the example to be
promising), the Strathcona client requests from the server

the source for the file containing the protoexample of
interest. The client trims the source file returned from the
repository to display only those portions that are relevant to
the example being displayed (e.g., Fig. 3d), including

package declarations, import declarations, and the imple-
mentation of the method declaration serving as the basis of
the example. Portions of the source that match facts in the
queried structural context are highlighted.11 The developer

can also view the untrimmed file if they want to see
additional details of the file from which the example
originated.

The Strathcona client displays matched examples and
their source, one at a time, in a separate view from the one
in which the developer initiated the query. The separation
of views allows the developer to query, navigate, and

investigate each example without losing the context of the
task that they were originally trying to solve.

4.6 Server: Performance

Within this paper, we describe the use of two versions of

the repository, each of which contained the Eclipse SDK

platform and several subsidiary projects that depend on

this platform, specifically, the Graphical Editing Frame-

work, Visual Editor, Web Tools, UML2 Metamodel, Eclipse

Modeling Framework, and the XML Schema Infoset Model.

Our study in Section 5.2 was based upon a version of the

repository that had been populated with Eclipse

Version 3.0M8. The studies in Sections 5.3 and 5.4 were

performed at a later date, and the repository had been

updated to Eclipse Version 3.2M5. Table 1 lists the size of

each of the tables within this latter database version, the

Java source code for which comprises approximately 3.7

MLOC (195 MB); the database itself occupies 462 MB.
As it is currently implemented, Strathcona seems to scale

well. As shown in Table 1, our database contains more than

3,000,000 facts. Strathcona typically takes between 0.3 and

3 seconds (depending on the size of the queried source code

fragment) to generate and return its 10 examples. The

construction of the structural context for the query and

display of the examples are both extremely fast, taking less

than 100 ms each.12

Because Strathcona’s repository should be accessed far

more often than having new code added, we have indexed

the tables in the database to favor read access. Three factors

can slow Strathcona’s response rate. First, a large repository

could lead to slow responses; to date, we have found this

manageable. Even with 3.7 MLOC of code indexed, we are

able to return examples in less than 3 seconds in the worst

case. Second, the size of the queried structural context

might slow the response time. Again, we have found this

manageable since most queried contexts tend to be small,

less than 10 facts. Finally, the nonspecificity of each fact in

the structural context could degrade the performance of the

tool. In our running example, we saw that String was

used 92,362 times in the repository, while the more specific

type, IStatusLineManager, was used only 204 times.

When querying on code that uses only general types such as

String or int, Strathcona takes longer to generate and

return examples.
Strathcona’s performance might be improved by using

knowledge of the queried context to select which heuristics

to run, by querying with the most specific facts first and

applying less specific facts only if necessary, and by

improving the way in which examples are cached for

future use. However, we have not implemented these

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 959

11. Currently, this highlighting is done lexically by searching the source
for the trimmed method for key identifiers appearing in the structural facts
of the example. Obviously, this can lead to false highlights, but works
sufficiently well in practice for the proof-of-concept implementation.

12. The server processing the queries was a Pentium 3 800 MHz machine
with 1 GB RAM, and the workstation housing the database was a Pentium 3
1000 MHz machine with 1 GB RAM.

TABLE 1
Number of Structural Facts in the Repository

measures as we have not found them necessary to obtain

good performance.

5 EVALUATION

In evaluating our approach, we sought to address three key

questions. Do our structural matching heuristics return

examples that a developer can interpret to complete tasks?

Can a developer use Strathcona to locate useful examples

with less effort than other alternatives? Can a developer

with little specific knowledge of an API reasonably create

source code fragments for which Strathcona will return

useful examples?
To help answer these questions, we performed four

empirical investigations:

1. a qualitative, semicontrolled experiment (Section 5.2)
involving two developers who were inexperienced
with the API of interest,

2. a quantitative experiment (Section 5.3) into the
effectiveness of Strathcona relative to a lexically
based search tool (grep) and a structurally aware
search tool (Eclipse search),

3. a quantitative experiment (Section 5.4) into the
relationship between the quality of fragments
supplied by the developer and the relevance of
examples returned by Strathcona, and

4. a qualitative case study of the use of Strathcona by
an industrial developer as part of their daily work
(Section 5.5).

A summary of our findings in relation to the research

questions of interest and a discussion of their validity is

given in Section 5.6. Two of these studies worked from a set

of standard tasks; we begin by describing these standard

tasks in Section 5.1.

5.1 Development Tasks

We selected four tasks as useful for evaluating the strengths

and weaknesses of Strathcona. These tasks came from our

experience developing Strathcona and involve separate

parts of the Eclipse API. The repository contained relevant

examples for Tasks 1, 2, and 4. At the time the study in

Section 5.2 was conducted, no relevant examples existed in

the repository for Task 3. For each task, we have considered

which details a perfect solution would need to possess and

the relative importance of each detail. Examples returned

by Strathcona can then be assessed as to whether they

provide the full set of these details or some subset, and each

example can be graded. Descriptions are given below for

each task and which details of a solution matter to complete

the task. A grading scheme for examples is described for

each task, rating examples from “A” (excellent) to “F”

(irrelevant) depending on which details are displayed by an

example.
Task 1: Update status line. The first task involves

displaying text in the status line of the Eclipse IDE, as

described in Section 2. Although this task is conceptually
simple, it requires a chain of method calls accessing objects

of a variety of types, including IViewPart, IViewSite,

IActionBars, and IStatusLineManager. By investigat-
ing the Eclipse documentation, the developer can discover
enough information to construct the code fragment shown
in Fig. 8a.

Determining how to access an instance of IStatus-

LineManager to be able to call setMessage(String) on
it is key to this task. Examples can thus be graded on the
basis of whether they demonstrate how to access a series of
objects culminating in the call to setMessage(String).
The grading scheme is as follows: (A) demonstrates the
complete calling sequence from IViewPart.getView-

Site() to IViewSite.getActionBars() to IAction-

Bars.getStatusLineManager() to IStatus-

LineManager.setMessage(); (B) does not demonstrate
how to access an instance of IViewSite but the remainder
of the calling sequence is shown; (C) does not demonstrate
how to access an instance of either IViewSite or
IActionBars; (D) demonstrates only a call to set-

Message(String) on an instance of IStatusLine-

Manager but gives no hint as to how to obtain this
instance; (F) none of the needed information is given.

Task 2: Create AST. This task involves building an
Abstract Syntax Tree (AST) from a source string. A search
of the Eclipse documentation indicates that ASTParser.
setSource(char[]) should provide the appropriate
functionality. However, three things are required: A factory
is needed to create the parser, the parser needs to have
access to the appropriate source code, and the AST needs to
be generated. The fragment shown in Fig. 8b can be
determined from the Eclipse documentation.

The grading scheme for examples for this task is as follows:
(A) creates a parser, calls setSource(char[]) on this
parser using the source string, and creates a compilation unit;
(B) sets the parser’s source from some other input (e.g., a
classfile or another compilation unit); (C) same as an A or a B
but obscured by extraneous functionality; (D) uses the
relevant types but does not demonstrate any details of
completing the task; (F) completely irrelevant.

Task 3: Highlight source text. The third task involved
highlighting instances of method invocations in a code
viewer using the AST representation generated in Task 2.
To solve this task the developer would need to under-
stand how to manipulate StyleRanges, TextViewers,
and Colors. Fig. 8c lists the fragment for this task that
can be determined from an examination of the Eclipse
documentation.

The grading scheme for examples for this task is as
follows: (A) demonstrates how to construct StyleRange
objects and Color objects, and how to apply the Style-

Range to the TextViewer; (B) only shows how to
construct and apply StyleRange objects; (C) only shows
how to apply StyleRange objects; (D) uses one or more of
the relevant types, but nothing more; (F) is completely
irrelevant.

Task 4: Generate method signature. This task was the most
complex of the four. Using an ASTVisitor, the developer
was asked to extract the signature and modifiers for each
method declaration in the AST and to output this information
as a formatted String. This task requires the use of several

960 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Eclipse framework types including Type, Primitive-

Type, ArrayType, Name, SimpleName, QualifiedName,
Code, Flags, and SingleVariableDeclaration. The
task is complicated by the fact that formatting the modifiers
can be done either manually via a large case statement or
via a utility method in the Flags class; the latter solution is
deemed preferable. Fig. 8d shows the fragment for this task
that can be determined from the Eclipse documentation.

The grading scheme for examples for this task is as
follows: (A) shows how to extract the return type, formal
parameters, and modifiers, handles special cases (such as
parameters that are arrays), and demonstrates how to
format the modifiers via the utility method on the Flags

class; (B) shows how to extract everything but does not
handle special cases and performs modifier formatting via
a case statement; (C) shows how to extract all the
information from the AST, but does not format the
String for output; (D) uses some of the relevant types or
methods, but neither extraction nor formatting is fully dealt
with for even standard cases; (F) completely irrelevant.

5.2 Does Strathcona Provide Useful Examples?

Before we can compare Strathcona to other tools, we need to
verify that Strathcona can indeed return relevant source
code examples to developers. To answer this question, we
performed an experiment in which we asked two devel-
opers, with little experience in using the Eclipse API, to
complete tasks, described in Section 5.1, involved in
developing a plug-in for the Eclipse IDE. We monitored

the developers to see whether and how they used examples

provided by Strathcona.
Both subjects had some plug-in development experience.

Subject 1 had less than one month of Eclipse plug-in

development experience but more than eight years of Java

experience. Subject 2 had over six months of Eclipse plug-in

development experience but only 18 months of experience

with Java.
At the start of the exercise, the subjects were each

provided with a one-page document describing the four

tasks assigned and how to use Strathcona. In addition, a

method skeleton was provided for each task within which

they could develop their solution. The skeletons were

populated with code the developer would likely write to

accomplish their task. The code consisted of method calls on

types and references to methods on interfaces, as shown in

Fig. 8. These methods and types were identified using the

Eclipse documentation and code completion features,

simulating facts any developer could extract from the

documentation. We seeded this initial information to the

subjects to keep the time needed to complete the study

reasonable.
Neither subject had prior knowledge of how to

implement any of the assigned tasks. The standard Eclipse

Java Development Tools (Eclipse JDT) was available to the

subjects as they worked on each task. The tasks were

completed in the same order by each subject. Each subject

was given a maximum of three hours to complete the four

tasks.

5.2.1 Results

Table 2 summarizes the results. For each task, the table

shows how many of the 10 examples returned by Strathcona

the two subjects deemed useful for the task through their

direct use of code fragments and the number of examples

for which the subjects viewed the source. The table also

shows whether or not the subject was successful at

completing the task. For each task, there may have been

additional relevant examples, but we indicate only those

that were used by the subjects.
Task 1: Update status line. By examining the graphical

diagram of the first returned example, both subjects

determined that it would be useful to complete the task.

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 961

Fig. 8. Source fragments identified as relevant to each task. These

fragments were provided to the subjects for the study in Section 5.2.

(a) Fragment for Task 1. (b) Fragment for Task 2. (c) Fragment for

Task 3. (d) Fragment for Task 4.

TABLE 2
Novice Developer Study Results

Both subjects copied code from the example into their
editor, changed the argument for the setMessage method,
and ran the code to test it. The example used was returned
by all but the REFERENCES heuristic.

Task 2: Create AST. Both subjects again selected the first
example returned as it demonstrated the use of the method
of interest and included code to set up the parser and create
the AST. Again, both subjects used the graphical diagram to
determine that the example warranted closer examination.
The example they selected was returned by the CALLS and
USES heuristics. The second subject investigated the code
snippets for a number of examples before deciding that the
first one was the most relevant to the task. As for the first
task, both subjects integrated code from the example into
their source to complete the task. The code fragment
provided with the example contained two extraneous calls
that the subjects dealt with differently; one copied all of the
code and then deleted the extraneous sections, while the
other subject only copied the sections of code that were
relevant. (This subject studied the documentation for each
method call in the code fragment to figure out what it did
before it was copied.)

Task 3: Highlight source text. Strathcona was not able to
return any useful examples for this task, as none existed in
the repository. We deliberately included this task to
determine if subjects could identify when the returned
examples were insufficient. If the subjects are able to
recognize unhelpful examples, we have more confidence in
their assessment of returned examples.

The subjects both stopped examining the examples
provided within 15 minutes and implemented the feature
using the standard IDE tools. As the developers could not
identify relevant examples using the graphical diagram or
rationale view, they looked at the source code for several
examples. Interestingly, both subjects independently
decided to use Strathcona as part of this task to find an
example of how to create an SWT Color object; both
subjects used some code from the returned examples to
accomplish this portion of the task.

Task 4: Generate method signature. Subject 1 investigated
MethodDeclaration using the Eclipse code completion
feature to try to derive a working solution before using
Strathcona; they expressed concern about not finding a
relevant example as had happened for Task 3. After
querying Strathcona, the subject examined the graphical
diagram and rationale view for the first few of the
examples carefully before deciding which two examples
to investigate. The subjects used the rationale view more
for this task than all the other tasks combined. The
structural context contained many elements here, and it
was easier for the developer to determine the amount of
similarity to their query with the rationale view com-
pared to the graphical diagram. The first two examples
returned for this task matched four method calls in the
code used to query; the remaining examples matched at
most two method calls. After investigating the source
from the second example, the subject discarded it and
moved on to the first example. This example matched
several calls, as shown by its rationale for selection (see

Table 313). When viewing the code, this example had one
56-line method highlighted; this method also used several
private utility methods that totaled 61 lines of code. The
subject proceeded to copy code from the example in
small sections and completed the task successfully. The
example that the subject selected to complete the task was
returned by all but the USES heuristic.

Subject 2 mistakenly queried the repository on the wrong
method and searched through several irrelevant source files
before deciding to implement the feature manually. The
subject was partially successful but was unable to extract
some parts of the signature from the AST.

Summary. Subject 1 completed all four tasks successfully,
finding and using relevant examples in all three cases for
which appropriate examples were returned. Subject 2
completed three out of four tasks, finding and using
relevant examples in two of the possible three cases. In
each of the tasks where the subject found a relevant
example, source code was copied from the example into
the task code. These results show that our tool can deliver
relevant and useful examples to developers. They also show
that a developer can determine when the examples returned
are not relevant.

5.3 How Does Strathcona Compare to Other Tools?

Existing traditional search tools used by developers can
be placed into two categories: those that perform textually
based pattern matching and those that incorporate
knowledge of syntax and structure. As representatives
of these categories, we have considered how Strathcona
compares to the use of grep and to the use of Eclipse’s
search facilities, each of which can be used to perform
searches on a large repository of source code. To this end,
we considered whether grep and Eclipse Search would
perform as well as Strathcona for locating relevant
examples; we utilized the development tasks described
in Section 5.1 to compare the tools.

Comparing grep to Strathcona. To compare the use of grep
to the use of Strathcona, we first wished to determine the
manner in which an expert user of grep would use it on
these development tasks. To this end, we invited a
volunteer who had regularly used grep in industry for
many years, to complete the tasks. This volunteer had read
about Strathcona and was skeptical that it could outperform
the use of grep. We gave the volunteer the same task
descriptions and starting fragments as the subjects of the

962 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

13. Each name was actually preprended by the package name,
org.eclipse.jdt.core.dom.

TABLE 3
Task 4 Rationale

study in Section 5.2, plus direct access to the source files
stored as part of the repository; details of the volunteer’s
use of grep were recorded. For Task 1, the volunteer located
methods that returned an instance of IStatusLine-

Manager and investigated the implementation of these
methods to determine what other information was needed
to be able to return the instance. Essentially, the volunteer
attempted to work backward from the final call in the call
chain without considering what the starting place needed to
be. After 35 minutes of constructing complex grep queries,
the volunteer gave up without having located an example
they recognized as useful and without having completed
the task; the other tasks were not attempted. From this
experience, it seems clear that unconstrained use of grep
does not easily lead one to search on the relevant facts.

We then wished to know whether a developer could
reasonably mimic the structural-context approach of Strath-
cona using grep. With an understanding of the structural
context approach underlying Strathcona, we formed grep
queries for the facts that Strathcona extracted from the
sample fragments shown in Fig. 8. The grep query that
corresponds to the Task 1 fragment is shown in Fig. 9. These
queries locate those files that match every fact from the
structural context.

There are two key problems with the results of using
grep in this manner. First, any returned file must match
every fact from the structural context; this is a more stringent
definition of similarity than used by Strathcona. Second,
these grep queries only return files, whereas Strathcona’s
results return examples, including a graphical depiction of
the structure that is similar and a source code fragment with
its similar structure highlighted. Thus, the results of grep
are but an initial step toward identifying and judging
potential examples.

Thus, we considered whether grep can be used to inform
the developer that an example occurs somewhere within the
body of a file. To this end, we used grep-based queries, like
that in Fig. 9, to mimic the search for structural context as
performed by Strathcona. Such queries were formulated on
the structural contexts from the fragments in Fig. 8; the
results are shown in Table 4 relative to Strathcona’s results
for the same fragments. For each task, the table compares

the grades assigned to the examples produced by Strathco-
na (as described in Section 5.1) to the best example
occurring in each file returned by the grep-based query;
there were no cases of multiple examples existing in the
same file. The column for each grade shows how many
examples existed with that grade, and what percentage of
the total number of results received that grade. The total
number of results—i.e., examples returned by Strathcona
(always limited to 10 examples) and files returned by grep-
based queries—is shown in the last column. This study was
conducted on a later version of the repository than that
used for the study in Section 5.2: Good examples for Task 3
existed in this later version.

Table 4 shows that grep-based queries for structural
context were somewhat effective at locating files containing
useful examples. For Task 1, the grep-based query failed to
identify the presence of several good examples, but
identified a number of low-quality examples instead; since
the order of results from a grep-based query is meaningless,
all of these results would need to be examined. Strathcona
and the grep-based queries are similar for the other tasks,
considering that Strathcona will always try to return
10 examples, even when some of those are poor matches
—the detailed rationale provided by Strathcona will enable
the developer to determine if the match is good or not. As
our repository contained over 3 MLOC, we were unable to
determine if any examples were missed by either approach.
For the two most complex tasks (3 and 4), both techniques
located the same A-graded examples.

While Table 4 details the effectiveness of each approach
to locate relevant examples, Table 5 shows the amount of
information a developer must consider using each approach
in order to determine the relevance of each example. Table 5
lists the average and total noncomment, nonblank lines of
code returned by each approach. As grep returns whole
files for a developer to examine, this count was taken from
the whole file, while Strathcona’s totals were derived from
the highlighted portion of the code shown to the developer.
Table 5 shows the large difference in the scale of the
information that the developer must navigate in order to
determine the relevance of a returned example: on the order
of 10 to 100 times as many LOC result from the grep-based
approach.

Comparing Eclipse Search to Strathcona. To use Eclipse
Search—which does not support compound queries—for
the tasks, we had to decide which single fact from the
fragments in Fig. 8 was most important to each task we

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 963

Fig. 9. Sample query using grep to mimic structural context searches.

TABLE 4
Structural-Context-Based Search: Quality Comparison

TABLE 5
Structural-Context-Based Search: Result Size Comparison

were trying to solve. For each query, we selected the
appropriate Search For radio button (a choice between
Type, Method, Package, Constructor, or Field) and Limit

To radio button (e.g., Declarations, References, or All
Occurrences) in order to return the most relevant results.

For example, we attempted the first task by searching for
IStatusLineManager.setMessage(String) with the
Search For flag set to Methods and the Limit To flag set
to References. Eclipse Search returned 101 examples, of
which only 11 percent were grade A quality; the results
were not ordered according to quality. To be tractable for
searching for specific examples, Eclipse Search would need
to be extended to support compound searches. Until that
happens, its results are clearly inferior for this purpose;
therefore, we abandoned further investigation of Eclipse
Search.

Summary. Existing traditional search approaches are
inferior to Strathcona for locating relevant examples of the
use of an API. Eclipse Search is not implemented to
provide the basic functionality needed to find examples
that display multiple facts of interest. Standard ways of
using grep do not lead to the location of good examples.
While the use of grep can be constrained to mimic a
search for structural context, it cannot present examples in
a precise manner, but merely points to files—in random
order—in which there might be a relevant example. Even
when using grep in a structural-context-based manner, its
use for discovering relevant examples remains a laborious
and time-consuming task.

5.4 Is It Hard to Create Effective Fragments
to Query On?

To successfully locate a relevant source code example
with Strathcona, the developer needs to come up with a
query that references one or more program elements that
are involved in potential examples. Our first study (in
Section 5.2) did not require the subjects to create source
code fragments (although for Task 3, both subjects did
create their own source code fragments). To investigate
the ability of Strathcona to return appropriate examples
for a range of structural context queries (its “robustness”),
we performed an analytic experiment. In particular, we
wanted to investigate the effect of size and content of
queries on Strathcona’s responses.

We selected code fragments at random from our
repository to serve as the basis for forming queries until
we had found four fragments that were each between 10 and
20 lines long. Each of the four fragments was then modified
to eliminate information that would allow Strathcona to
unfairly locate the original fragment—specifically, refer-
ences to any private members that a developer could not

reasonably utilize within their source fragment were
eliminated.14

The structural contexts of each of these modified
fragments was then extracted. We used every subset of
each structural context as a query on the Strathcona
server to see if it could locate the original code fragment.
We chose to look for an exact match to the original code
fragment in the results returned, rather than examine
each returned result for relevance, to keep the analysis
tractable. This choice represents a worst case in assessing
relevance.

Results. Table 6 shows how often a combination of facts
retrieved the desired example. For each case, the Facts
column indicates how many facts existed in the structural
context extracted from the modified fragment, and the Total
column represents the number of subsets of the facts within
the structural context that were used as queries to the
Strathcona server. The Matches column indicates how many
of the queries sent to the Strathcona server resulted in the
original fragment being returned and the “percent” column
indicates the percentage of the total queries that resulted in
positive results. Finally, the Average Rank column indicates
the average rank (between 1 and 10) of the positive results
in the order of returned examples.

The data in this table shows that many different subsets
of a structural context can be used to find the same context
within the repository. Specifically, in two of the cases,
87 percent and 96 percent of the subsets return the sought
after example. Strathcona can successfully match many
different structural contexts to find the same example. In
the two worst cases—shown in the first and last rows of the
table—the correct example was returned only 64 percent
and 72 percent of the time, respectively, because the code
fragment for these cases used portions of the API that are
commonly used by many parts of the system. Each of the
remaining cases utilized portions of the API that were less
commonly used.

We also used these four cases to investigate whether the
size of the context changes the effectiveness of Strathcona.
Fig. 10 and Fig. 11 present the results, showing the
relationship between the size of the query and how often
the original example is retrieved. Fig. 10 treats all facts
equally—even those that are obviously poorly specific, such
as calls to String. Fig. 11 only considers those facts that are
of key significance to the task, referred to as primary facts.

Fig. 11 demonstrates that even when the developer
provides structural contexts containing only one or two
important facts, Strathcona can often return the original
source code fragment as an example. Knowing four or more
important facts in these cases ensures that this queried

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

14. The selected and modified fragments consisted of: 1) the method
match(AnnotationTypeDeclaration, Object) from the class AST-

Matcher, 2) the method getVersionedIdentifier() from the class
Feature, where lines referencing the private field versionId were
commented out; 3) the method searchForRuntimes(IPath, IRun-

timeSearchListener, IProgressMonitor) from the class Runtime-
Locator; and 4) the method decodeJRELibraryClasspathEntries

(String) from the class NewJavaProjectPreferencesPage, where
the highly specific references to the static field NewJavaProject-

PreferencePage_error_decode on the class PreferencesMessages
were commented out.

TABLE 6
Fragment Specificity Results

fragment is returned. Fig. 10 shows that, even in the

presence of largely irrelevant facts, good examples come

back, though with lower probability.
Summary. The results of this study show that our

heuristics are robust to various forms of queries, success-

fully matching various input structural contexts to their

original source code fragment. Our analysis also demon-

strates that even small input structural contexts can

successfully locate relevant examples in many cases.

These properties of Strathcona help reduce developer

frustration by minimizing situations where a query does

not successfully locate a relevant source code fragment.

From this evaluation, we can recommend to the developer

that small, specific queries are better than larger, more

general ones. This fits with how Strathcona is to be used,

as a developer who is lost will likely have few extraneous

facts at their disposal.

5.5 How Does Strathcona Fit into an Industrial
Work Flow?

Industrial developers use a mixture of tools to help them

complete their tasks as quickly as possible. To see how

Strathcona might be used in this context, we provided the

tool to an industrial developer who was unfamiliar with the

approach prior to the study. This developer had a specific

task he needed to solve: He wanted to create an Eclipse

plug-in that provided a visual component to locate all of the

HTML files within a certain directory (and its subdirec-

tories) and that could support opening a Compare Editor on

any pair of selected files to be able to visually see

differences between them.
To create the plug-in, the developer first used wizards

provided by Eclipse to create a Sample View. He then used

part of the code generated by the wizards—the code that

initialized the view (createPartControl(Composite))

—to query Strathcona. By looking through the examples

returned by Strathcona, he discovered three things: how to

declare a simple sorter, the usage of several APIs frequently

used in that context (including setAutoExpandLevel

(TreeViewer.ALL_LEVELS) and setUseHashLookup

(true)), and how to solve a bug from the previous day (a

call to treeViewer.addSelectionChangedListener

(this) was missing).
He then tried to use Strathcona to find examples that

would return the location of the root of his workspace. He

needed to identify the call chain ResourcesPlugin.

getWorkspace().getRoot().getLocation(). He

queried Strathcona with an empty method declaration

called getWorkspaceLocation(). This query did not

contain useful structural context; because of this, Strathcona

did not locate any relevant examples. To find an example,

he instead queried Google with the phrase “compute the

root of the Eclipse Workspace.” Fortunately, an article had

been written that described the solution; the fifth result

returned by Google was an article that contained the

information he desired.
We believe his attempt to use the empty method

declaration as a query indicates he did not fully understand

how Strathcona was intended to be used. The terms he

queried Google with were conceptual, not containing any

framework types or methods. However, a search through

the Eclipse API documentation yields types (e.g., Work-

space and IWorkspaceRoot) that can be used to query

Strathcona to find relevant examples.
At this point, the developer had discovered how to create

a tree view and how to populate it with the HTML files from

the workspace. Next, the developer needed to discover how

to launch the CompareEditor. By using Google, he

determined that CompareUI.openCompareEditor

(...) performed the operation of interest. By querying

Strathcona with that fragment, he determined how several

other projects have set up and used CompareEditors.
To complete his task in a reasonable amount of time, the

industrial developer used a variety of tools (Google, Eclipse

search, Eclipse autocomplete, and Strathcona). Google

frequently pointed him toward some initial useful APIs as

it has indexed the Eclipse Javadoc documents, newsgroups,

and mailing lists. From these initial Google-provided APIs,

the developer was able to query Strathcona. By looking

through the examples provided by Strathcona, he noticed

other APIs that were frequently used in conjunction with

those he was already investigating. The developer also used

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 965

Fig. 11. Structural context size (number of primary facts) versus query

effectiveness (occurrence rate of the desired example).

Fig. 10. Structural context size (number of facts) versus query

effectiveness (occurrence rate of the desired example).

Strathcona to query about types of interest that he learned
about through other searches; in these cases, Strathcona
provided the developer with contextual usage information
about how to best set up and use the types. Overall, the
developer was able to incorporate Strathcona into his
workflow and he found that it provided him with
additional information (the examples) that was more
difficult to access with traditional techniques.

Based on his experience, the developer suggested two
improvements to Strathcona: to support text-based searches
on the repository and to provide better support for the
navigation of an example’s source code (equivalent to that
provided by Eclipse for projects in the workspace). These
two features are provided by the lexically based, online
systems Krugle15 and Koders.com.16 However, these sys-
tems cannot recommend examples relevant to a developer’s
current task since they do not leverage the structural
information embedded in the source code. Ultimately,
combining such features with Strathcona should result in
an industrial-strength tool.

5.6 Evaluation Summary

We wanted to answer three questions with our empirical
investigations. Do our structural matching heuristics return
examples that a developer can interpret to complete tasks?
Can a developer use Strathcona to locate useful examples
with less effort than other alternatives? Can a developer
with little specific knowledge of an API reasonably create
source code fragments for which Strathcona will return
useful examples? We describe how the combination of
results from our studies provide answers to these questions
and then discuss the limitations of these empirical
investigations.

Aggregate results of empirical studies. Our first question
considered whether the structural matching heuristics
encoded in Strathcona return examples that a developer
can interpret to complete tasks. In essence, this question
focuses on the usefulness of the tool’s output (i.e., the
examples) when it is given good input (i.e., a reasonable
query). The results of two of our studies—the first study in
which developers solved tasks with seeded queries and the
fourth study in which an industrial developer used the
tool—provide evidence to support the claim that the results
of Strathcona queries can be understood and used by a
developer. In the first study, the two developers were able
to incorporate code from examples provided by Strathcona
that they deemed helpful and they were able to discern
when Strathcona did not provide useful examples. In the
fourth study, the industrial developer was also able to
integrate Strathcona into his development process, success-
fully using the returned examples to complete portions of
his task.

Our second question asks whether a developer can use
Strathcona to find useful examples with less effort than
alternatives. The second and fourth studies we conducted
each provide evidence to suggest that, for a number of cases,
Strathcona is able to perform to this expectation. The second

study focuses specifically on this question, comparing the
results produced by Strathcona to those of grep and
Eclipse’s structured search. The fourth study, in which an
industrial developer used the tool, also shows that when
contextual information about an API is needed, Strathcona
can be of aid.

Our third question considered whether developers can
reasonably form queries to Strathcona. Three of the
studies—the first, third, and fourth—address this question.
The third study addresses the question directly and
analytically, considering the robustness of query formula-
tion to providing reasonable examples. This study showed
that Strathcona is robust and can provide useful responses
to a range of similar queries. The first and fourth studies
address the question indirectly and qualitatively. In the first
study, each of the two developers for the third task (which
did not return any relevant examples by design from the
seeded query) formulated their own queries and used
examples from Strathcona returned by those queries. In the
fourth study, the industrial developer used Strathcona on
five independent queries he formulated naturally as part of
his task, using the returned examples from three of these to
complete the task.

Validity of empirical studies. Each of the four evaluation
activities we performed has limitations.

In the user-based case study (Section 5.2), we chose to
have a small number of subjects attempt the use of our
approach across a range of tasks rather than have a larger
number of subjects attempt one or two tasks. We made this
choice because we believe it was more important to first
examine the generalizability of the approach across tasks
than across developers. In this study, we also chose to
provide the subjects appropriate source fragments to query
the Strathcona tool. This choice was made in the interest of
the time needed to be spent by a subject on the study. To
investigate this limitation, we undertook the third study
(Section 5.4) to investigate how difficult it might be for a
developer to formulate an appropriate query.

Our second study, which compared the effectiveness of
Strathcona against grep and Eclipse search (Section 5.3),
may be criticized for bias toward Strathcona because we
performed the comparisons ourselves. To help address this
limitation, we had a grep expert attempt the first task. As
we have described, this expert was unable to make
sufficient progress within more time (35 min) than most
developers might typically allocate to finding an appro-
priate example. The comparison we performed used a
complicated sequence of grep queries in an attempt to
ensure that we made as fair a comparison to what grep
could possibly return.

The third study tested the robustness of the Strathcona
tool against a range of queries for the same example. Our
intent in conducting this study was to simulate a range of
queries that might be formed by a developer. There are two
major limitations of this study. First, we do not know if the
queries that are successful in returning the sought after
example are representative of the queries that a developer
might form. The high percentages of queries returning the
desired result do suggest that, even based on random

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

15. http://krugle.com (last accessed: 9 June 2006).
16. http://koders.com (last accessed: 9 June 2006).

formation of queries, Strathcona can return useful results.
The second major limitation is that we chose methods of a
particular length, between 10 and 20 lines, to use in this
experiment to keep the analysis tractable. The methods we
chose were comprised of between 8 and 12 structural facts,
while, in our repository, the average method encodes
12.5 structural facts.

All of the evaluations discussed in this section targeted
the Eclipse APIs. We chose Eclipse for our evaluations
because it is a large framework with many APIs and the
Eclipse implementation makes heavy use of its own APIs,
providing many sources of examples. We discuss the use of
our approach on two other frameworks in Section 6.4.

6 DISCUSSION

We have shown that Strathcona can return relevant code
examples to developers using a framework and that
developers can recognize the relevant examples. In this
section, we discuss possible pitfalls and limitations of our
approach, describe heuristics that we did not find useful,
and consider the broader applicability of the approach.

6.1 Examples: Good or Bad?

It may be that the provision of examples to a developer
leads to worse code than when examples are not provided.
Rosson and Carroll showed, in a study of developers using
a Smalltalk framework [19], that developers frequently
copied and integrated snippets of code without trying to
understand exactly how they worked and executed the
resultant code to see the effects of the snippets. Rosson and
Carroll call this debugging into existence. The developers in
our study behaved analogously. As noted by Rosson and
Carroll, one potential problem with this strategy is that,
because simple examples require the least analysis, devel-
opers may not have a firm grasp of the different contexts in
which a snippet can be used. By returning multiple
examples and the rationale for their selection, we hope to
alleviate this potential problem and provide the developer
with examples for multiple contexts.

Providing examples does have some positive benefits.
The use of examples can reduce the amount of typing
required to complete a task, or ensure that the details of the
code are correct [19]. Anecdotally, we observed in our first
study (Section 5.2) that the presence of an example meant
that the code developed was more complete than if it had
been written from scratch. For instance, during the fourth
task in the first study, Subject 1, who successfully
completed the task, copied some code that checked for
array types and added the appropriate notations to the
method signatures without knowing what the code did,
resulting in a case being taken into account that the
developer had not considered. By leveraging the work
done by other developers in the past, this developer was
able to complete the task with higher quality than if the
developer had been working alone.

6.2 Heuristic Performance

To date, our focus has been on the utility of our overall
approach: whether structural similarity can be used to

return useful examples. In a pilot to the first study, we
attempted a more quantitative evaluation of the perfor-
mance of our heuristics. In the pilot, we asked a developer
to rate the examples returned by Strathcona for the four
tasks. We found that the developer was unable to provide
such a rating because the developer could not assess the
value of an example until trying to use it to complete the
task [9]. However, completing the task with one example
made it impossible to rate the next example given the
information learned from completing the task. It may be
possible to study the quantitative performance of the
heuristics through a larger study in which developers are
provided examples from only one kind of heuristic for the
same set of tasks; the value of the examples might then be
assessed across the set of developers. We have left this more
subtle experimentation for future work.

6.3 Heuristic Refinement

We developed the heuristics embedded in Strathcona
iteratively as described in Section 4. The current version
of the heuristics in Strathcona do not include a number of
the approaches we tried but that we did not find useful. We
briefly describe the failed approaches in the first three
paragraphs below. We then describe possible improve-
ments in the four subsequent paragraphs.

Complex Heuristics. An earlier version of this work [10]
described slightly different heuristics. The current version
of the tool has one additional heuristic and three fewer
heuristics than the earlier work. The REFERENCES heuristic
has been added to help developers find examples that
utilize public fields in framework classes. The USES WITH

INHERITANCE and CALLS WITH INHERITANCE heuristics
have been eliminated as each was equivalent to a combina-
tion of other heuristics: the USES and INHERITANCE

heuristics, and the CALLS and INHERITANCE heuristics,
respectively. The presence of such “nonorthogonal” heur-
istics weights certain structural facts more heavily than
others. The removal of the nonorthogonal heuristics did not
alter the recommended examples significantly in our
sample tasks but simply improved performance. The CALLS

BEST FIT heuristic was removed because it relied on the
selection of an arbitrary ratio (the percentage of calls that
matched those in the queried context) for its operation; an
optimal ratio that was effective for multiple projects could
not be determined.17 Our experience in developing these
heuristics suggests that the simplest heuristics are the ones
that generalize best across different projects and tasks.

Example Scoring. We tried to develop a scoring system
that would assign different values for the different kinds of
structural similarity, but we were unable to find an
approach that did not lose general applicability. Our
scoring approaches tended to work for one style of code
fragment but not others. We found that the styles of the
fragments differed depending on the stage of development
of the code and whether or not the developer had identified

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 967

17. The heuristics were changed after the evaluation in Section 5.2 was
complete but before the evaluations presented in Sections 5.3 to 5.5 were
performed. We have confirmed that, for the evaluation in Section 5.2, the
useful examples that are returned continue to be identical to those returned
previously. We did not record the details for the unhelpful examples.

reasonable hot spots in the framework from which to begin
the task.

Object Instantiations. Our heuristics do not treat object
instantiations specially; they are treated only as calls to a
constructor. We did not find that heuristics that treated
these instantiations specially were useful. One reason may
be variability in Eclipse as to whether clients or servers
instantiate objects. For example, whenever Factory classes
are involved, the client does not instantiate objects but gets
new objects delivered to them by framework objects.

Hierarchies. Strathcona’s heuristics do not transitively
check the type hierarchy when considering inheritance,
uses, calls, or references relations. In our initial investiga-
tion, we found that these additional targets did not increase
the effectiveness of our heuristics. While this seems correct
for Eclipse, it does not seem to hold for other frameworks,
such as JHotDraw. While Eclipse always refers to objects by
their most specific interface (e.g., the code always references
IStatusLineManager, not StatusLineManager), JHot-
Draw does not follow this convention. For instance, in
JHotDraw, types are referred to differently depending on
their context of use (e.g., a type is referred to as
CompositeFigure when relevant and Drawing at other
times). To best account for these polymorphic issues, our
heuristics should be extended to reflect the type hierarchy.
As Strathcona’s repository currently stores all of the
necessary relations to implement this functionality, this
change would represent an addition to the extensible set of
heuristics already supported by Strathcona.

Match Specificity. We treat each element of every
structural query equally. Because of this, our heuristics will
treat two examples equally even if one contains a call to a
specific relevant API while the other may just use String.
The results returned by the heuristics would likely improve
if we ordered our queries such that the most-specific (that
is, those with the least usages in the repository) were
queried before the less specific queries. Expanding on this
idea, we could use the least-specific query terms to only
reinforce already-selected examples. This enhancement
would likely improve the relevance of the returned
examples.

Unresolvable Types. If a developer is uncertain of which
type to use in a code fragment to be queried on, they must
currently either insert all possibilities or iterate through the
individual possibilities. In some cases, they may desire to
insert placeholders rather than refer to real types, or they
may not bother to include the appropriate import state-
ments. Strathcona currently assumes that types and method
signatures can be fully resolved, so any such use will result
in one or more facts that cannot be matched. For example,
the sample scenario (Section 2) involved querying on a call
to IStatusLineManager.setMessage(String) where
an import statement (not shown in Fig. 3a) allowed the
Eclipse IDE to determine the fully qualified types: org.
eclipse.jface.action.IStatusLineManager.

setMessage(java.lang.String). If the import state-
ment had not been present, the use of IStatusLine-

Manager could not have been resolved to its fully qualified
name; as a result, no structural contexts would have

matched this type use or this method call. Heuristics could
be introduced that search for lexically similar references to
deal with this issue.

Alternate Decompositions. Our current heuristics at-
tempt to locate structural contexts that utilize as many of
the queried facts as possible. However, developers are free
to decompose their systems as they wish and this can lead
to situations where our heuristics will fail to locate relevant
examples. An example of this would be for the fourth task
from Section 5.1. In this case, if the example in the
repository used separate private methods for extracting
different components of the method signature, Strathcona
may not identify it as a relevant example, even though,
ultimately, the code may be there to complete the task. To
support this type of analysis, our repository would need
to record the structural contexts for fragments larger than
method scopes, or heuristics would need to be introduced
that would combine structural contexts—effectively
“widening” the method-level fragments pointed at by
the individual structural contexts.

6.4 Experience with Other APIs

Each of the studies described in Section 5 used repositories
based on the Eclipse APIs. We also have informal
experience in using Strathcona with other APIs, specifically
HTTPClient,18 a package for creating client-side applica-
tions that utilize the Hyper-Text Transfer Protocol, and
JhotDraw,19 a Java GUI framework.

The documentation for HTTPClient makes clear how to set
up a basic client implementation, but not how to handle a
variety of error cases (e.g., protocol violations). A repository
seeded with HTTPClient and six applications using it was
queried on the basic client implementation, and useful
examples were returned demonstrating how to deal with
various error cases. No single example dealt with all the error
cases, but two examples illustrated the cases of interest. A
solution was constructed based on both examples.

For JHotDraw, a task of interest involved setting the
Z-order of figures in a drawing. The code under construc-
tion had access to a Figure instance; examining the API for
this type, the methods setZValue(int) and getZ-

Value() were discovered that appeared relevant. To
confirm this hypothesis, a query was made on the fragment
Figure. setZValue(0). A number of results came back
in the context of the class CompositeFigure, where three
methods were implemented that called setZValue(int):
sendToLayer(Figure, int), bringToFront(Fi-

gure), and sendToBack(Figure). Examining the im-
plementations of these methods, each involved detailed
management of an explicit ordering of figures within the
CompositeFigure; we revised our hypothesis, consider-
ing calls to these discovered methods to be preferable to
direct calls to setZValue(int). To test this hypothesis,
we added a call to CompositeFigure.sendToLayer

(Figure, int) to our code fragment and queried on it.
No examples were returned. Manual examination revealed

968 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

18. http://jakarta.apache.org/commons/httpclient/ (last accessed: 9 June
2006).

19. http://www.jhotdraw.org/ (last accessed: 9 June 2006).

that CompositeFigure is the supertype for Standard-
Drawing, and that StandardDrawing implements the
interface Drawing. Queries for Drawing.sendTo-

Layer(Figure, int) returned several examples, sup-
porting our revised hypothesis.

Our use of Strathcona on these two frameworks shows
promise that our approach applies to more than just the
Eclipse framework used in our evaluations. HTTPClient has
a smaller but still useful set of applications that can be used
to populate a repository and locate relevant examples. For
JHotDraw, Strathcona was not able to find examples that
bridge the gap between CompositeFigure and Drawing

because its heuristics do not currently search the type
hierarchy, as discussed in Section 6.3. Even so, Strathcona
aided us in both these tasks, and the lack of examples
returned by the query on CompositeFigure.send-

ToLayer(Figure, int) immediately informed us to
look elsewhere for detailed information.

7 CONCLUSION

In this paper, we have presented an approach to help
developers locate contextually relevant source code exam-
ples. These examples demonstrate how APIs of interest
have been used by other projects and can be used to help a
developer learn how to properly use those APIs. Our
approach has two key differences from previous work: The
repository automatically stores source code in a form
whereby task-specific examples can be generated as
needed, and the structural context that is used to form a
query is extracted automatically from a developer-indicated
source code fragment.

There are several ways in which the approach we have
presented could be improved. We believe the most
significant extensions would be in supporting richer queries
to a repository through selection of discontiguous frag-
ments of code, in better utilizing type hierarchy information
in locating relevant protoexamples, and in better rankings
and summary descriptions of returned examples to allow a
developer to more easily determine relevance. In terms of
evaluation, given the ability of the approach to return good
examples for a wide range of queries, there remains a need
to perform additional empirical studies with industrial
developers.

We have demonstrated that structural context can be
used as a basis for matching structurally relevant contexts.
The heuristics we have developed can quickly locate and
rank potential matches. From these matched structural
contexts, we can derive examples to succinctly demonstrate
to the developer those portions of the source code from the
repository that are relevant to their task. The approach is
effective, efficient, and more robust (in dealing with poor
input) than traditional alternatives.

ACKNOWLEDGMENTS

This research was funded in part by IBM and in part by the
Canadian Natural Sciences and Engineering Research
Council. The work benefited from comments by members
of the Canadian Consortium for Software Engineering

Research. The authors would like to thank the subjects
who participated in their studies. They would also like to
thank Miryung Kim, John Anvik, Andrew Eisenberg, and
the anonymous referees for their comments.

REFERENCES

[1] H.A. Basit and S. Jarzabek, “Detecting Higher-Level Similarity
Patterns in Programs,” Proc. European Conf. Software Eng. and ACM
SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 156-165,
2005.

[2] I.D. Baxter, A. Yahin, L.M.D. Moura, M. Sant’Anna, and L. Bier,
“Clone Detection Using Abstract Syntax Trees,” Proc. Int’l Conf.
Software Maintenance, pp. 368-377, 1998.

[3] G. Butler and P. Dénommée, “Documenting Frameworks,”
Building Application Frameworks: Object-Oriented Foundations of
Framework Design, chapter 21, 1999.

[4] D. �Cubrani�c, G.C. Murphy, J. Singer, and K.S. Booth, “Hipikat: A
Project Memory for Software Development,” IEEE Trans. Software
Eng., vol. 31, no. 6, pp. 446-465, 2005.

[5] G. Froehlich, H.J. Hoover, L. Liu, and P. Sorenson, “Hooking into
Object-Oriented Application Frameworks,” Proc. Int’l Conf. Soft-
ware Eng., pp. 491-501, 1997.

[6] R. Helm, I.M. Holland, and D. Gangopadhyay, “Contracts:
Specifying Behavioral Compositions in Object-Oriented Systems,”
Proc. European Conf. Object-Oriented Programming and ACM Conf.
Object-Oriented Programming Systems, Languages, and Applications,
pp. 169-180, 1990.

[7] S. Henninger, “Retrieving Software Objects in an Example-Based
Programming Environment,” Proc. ACM SIGIR Int’l Conf. Research
and Development in Information Retrieval, pp. 251-260, 1991.

[8] R. Hill and J. Rideout, “Automatic Method Completion,” Proc.
IEEE Int’l Conf. Automated Software Eng., pp. 228-235, 2004.

[9] R. Holmes, “Using Structural Context to Recommend Source Code
Examples,” master’s thesis, Univ. of British Columbia, 2004.

[10] R. Holmes and G.C. Murphy, “Using Structural Context to
Recommend Source Code Examples,” Proc. Int’l Conf. Software
Eng., pp. 117-125, 2004.

[11] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita,
and S. Kusumoto, “Component Rank: Relative Significance Rank
for Software Component Search,” Proc. Int’l Conf. Software Eng.,
pp. 14-24, 2003.

[12] R.E. Johnson, “Documenting Frameworks Using Patterns,” Proc.
ACM Conf. Object-Oriented Programming, Systems, Languages, and
Applications, pp. 63-72, 1992.

[13] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
Mining: Helping to Navigate the API Jungle,” Proc. ACM Conf.
Programming Language Design and Implementation, pp. 48-61, 2005.

[14] A. Michail, “Data Mining Library Reuse Patterns Using General-
ized Association Rules,” Proc. Int’l Conf. Software Eng., pp. 167-176,
2000.

[15] A. Michail, “Code Web: Data Mining Library Reuse Patterns,”
Proc. Int’l Conf. Software Eng., pp. 827-828, 2001.

[16] L.R. Neal, “A System for Example-Based Programming,” Proc.
SIGCHI Conf. Human Factors in Computing Systems, pp. 63-68, 1989.

[17] S. Paul, “SCRUPLE: A Reengineer’s Tool for Source Code Search,”
Proc. IBM Centre for Advanced Studies Conf., pp. 329-346, 1992.

[18] E. Rissland, “Examples and Learning Systems,” Adaptive Control of
Ill-Defined Systems, 1983.

[19] M.B. Rosson and J.M. Carroll, “The Reuse of Uses in Smalltalk
Programming,” ACM Trans. Computer-Human Interaction, vol. 3,
no. 3, pp. 219-253, 1996.

[20] Y. Ye, G. Fischer, and B. Reeves, “Integrating Active Information
Delivery and Reuse Repository Systems,” Proc. ACM SIGSOFT
Int’l Symp. Foundations of Software Eng., pp. 60-68, 2000.

[21] Y. Ye and G. Fischer, “Supporting Reuse by Delivering Task-
Relevant and Personalized Information,” Proc. Int’l Conf. Software
Eng., pp. 513-523, 2002.

[22] A.M. Zaremski and J.M. Wing, “Signature Matching: A Tool for
Using Software Libraries,” ACM Trans. Software Eng. and
Methodology, vol. 4, no. 2, pp. 146-170, 1995.

HOLMES ET AL.: APPROXIMATE STRUCTURAL CONTEXT MATCHING: AN APPROACH TO RECOMMEND RELEVANT EXAMPLES 969

Reid Holmes received the BSc and MSc
degrees in computer science from the Univer-
sity of British Columbia in 2002 and 2004,
respectively. He is currently a PhD student in
the Department of Computer Science at the
University of Calgary. His research interests
include developer-oriented tool support, exam-
ple recommendation, and large-scale pragmatic
reuse.

Robert J. Walker received the BSc degree in
geophysics from the University of British Co-
lumbia in 1992 and the BSc, MSc, and PhD
degrees in computer science from the University
of British Columbia in 1994, 1996, and 2003,
respectively. He is currently an assistant pro-
fessor in the Department of Computer Science
at the University of Calgary. His research
interests involve software modification, including
design, reuse, and aspect-oriented software

development. He is a member of the IEEE.

Gail C. Murphy received the BSc degree in
computing science from the University of Alberta
in 1987 and the MS and PhD degrees in
computer science and engineering from the
University of Washington in 1994 and 1996,
respectively. From 1987 to 1992, she worked as
a software designer in industry. She is currently
a full professor in the Department of Computer
Science at the University of British Columbia.
Her research interests are in software evolution,

software design, and source code analysis. She is a member of the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

