
Compare and Contrast: Visual Exploration of Source Code Examples

Rylan Cottrell1, Brina Goyette2, Reid Holmes3, Robert J. Walker1, Jörg Denzinger1

1Dept. of Computer Science
University of Calgary
Calgary, AB, Canada

cottrell, rwalker,
denzinge@cpsc.ucalgary.ca

2Robotics Institute
Carnegie Mellon University

Pittsburgh, PA, USA
bgoyette@cmu.edu

3Dept. of Computer Science
and Engineering

University of Washington
Seattle, WA, USA

rtholmes@cs.washington.edu

Abstract
Understanding the commonalities and differences of a set
of source code examples can help developers to understand
or to evolve application programming interfaces (APIs).
While several approaches exist to assist developers in lo-
cating source code examples, they often present their re-
sults only in a basic list view, with at most an indication
of the relationship to the search query; unfortunately, they
offer no information on how the results relate to one an-
other. A developer is then faced with the highly manual
task of exploring these examples to discern their similar-
ities and differences. This paper describes our prototype
tool (called Guido) for exploring source code examples, us-
ing their structural correspondences. The Guido tool uses
multiple coordinated views to visualize the relationships be-
tween examples, in order to assist the developer in identify-
ing common and unique traits between them.

1. Introduction
Software developers rely upon application programming
interfaces (APIs) to leverage existing functionality writ-
ten by others. To understand how to “best” use an API
within their own systems, developers often examine other
implementations—examples—that use that API. Con-
versely, for developers who create and maintain APIs, the
need to evolve their public APIs must be balanced against
the potential impact on the consumers of those APIs; by
analyzing example usages of their API, the framework de-
veloper can gain an understanding of how other developers
are using it. Unfortunately, analyzing even a small set of
examples manually is a laborious and error-prone process.

Previous research has focused on locating source code
examples (e.g., [3, 4, 7]) and presents this information in
list-based views. Though such a list view can be helpful
for certain tasks, it places a large burden on developers try-
ing to infer commonalities and differences in the returned

examples. Tools that identify the commonalities and dif-
ferences between source code fragments (e.g., [5, 1]) are
limited to pairwise comparisons; thus, simply sequencing
the use of the location and comparison tools will not elimi-
nate the large manual burden a developer faces in trying to
explore a set of examples.

Current tools have two main shortcomings for these
tasks: developers must keep track of where in the list they
are and how the different examples relate through their com-
monalities and differences. To overcome these shortcom-
ings, a technique should provide locality, structure, and dis-
tinction:

• Locality. During the exploration, the developer knows
where they are.

• Structure. Structural information is not occluded
from the developer.

• Distinction. The developer is able to identify com-
monalities and differences between the source code
implementations.

We present our prototype tool, called Guido,1 for the
exploration of source code examples. Guido employs the
Jigsaw framework [2] to create a generalization hierarchy
from a set of source code examples. Utilizing this hierar-
chy, Guido replaces the traditional list view with multiple
coordinated views [9] that support locality, structure, and
distinction. These views are dynamic, updating in response
to the developer’s interaction.

This paper is structured as follows. Section 2 describes
the related work and how it does not adequately address
this problem. Section 3 describes the Guido prototype tool.
Section 4 discusses remaining issues and future work.

1Italian, meaning “I guide”



2. Related Work
Developers wishing to explore software systems want to
discover key artifacts and relationships that exist between
the artifacts. Software exploration tools (e.g., RMTool [8],
SHriMP [11], SEXTANT [10]) facilitate this discovery
process by visualizing the different relationships between
source code artifacts spread across a software system (e.g.,
type hierarchies, method callee relationships, dependen-
cies). The problem of exploring interrelated examples is
different from the general exploration of a software system,
as the developer is interested in comparing and contrasting
the examples.

Some clone detection techniques (e.g., CCFinder [6])
include a visualization element. Clone detection is quite
different from analyzing commonalities and differences
between examples, though one could imagine analyzing
clones similarly for the sake of refactoring them [1].

A variety of tools (e.g., Semantic Diff [5], Break-
away [1], the comparison editor of the Eclipse IDE) can
help assist developers to discover commonalities and differ-
ences between two source code examples. This limitation
to pairwise comparisons hinders the developer’s ability to
explore larger sets of implementations. A developer using
the pairwise comparison is still required to form a mental
abstraction over the set as a whole.

3. Guido
We briefly outline the generalization graph that Guido com-
putes, as well as its visualization and interactive features.

Generalization graph. Guido performs generalization
from examples in a pairwise fashion, via the process de-
scribed in detail previously [2]. This process maintains
structural elements that each pair of examples have in com-
mon and elides the differences. For example, if we have
two methods m1 and m2 (see Figure 1), we create a general-
ized structure by keeping the substructures the two methods
have in common (visibility, return type, parameter type, and
method call) and create generalization variables for those
substructures that are in disagreement (method name, for-
mal parameter name, referenced name).

Guido creates a generalization graph by performing pair-
wise generalization for all the examples; each generaliza-
tion is added as a node to a graph with its originating exam-
ples as leaves. Identical generalizations are collapsed into a
single node. This process is repeated on the generalizations
themselves until a unique root node is created (such a root
node always exists after a finite number of steps).

Visualization. Guido uses three coordinated views [9] to
incorporate the three properties—locality, structure, and
distinction—into a visualization: (1) the hierarchy view vi-
sualizes locality for the developer; (2) the source view vi-

Figure 1. Generalization structure (at top) formed
from two concrete methods (at bottom).

sualizes the structural information and assists in visualiz-
ing distinction; and (3) the tag cloud visualizes distinction.
These coordinated views can be seen in each of the subfig-
ures of Figure 2. The visualization’s initial state (Figure 2a)
has the root generalization node selected.

Hierarchy View. The hierarchy view visualizes the gen-
eralization graph as a tree, where nodes with multiple par-
ents are split into copies, one per parent; the root node is
leftmost. (We discuss our rationale for presenting the graph
as a tree in Section 4.) Generalizations are represented as
brown nodes in the tree; off-white nodes represent the con-
crete implementations. A selected node changes to purple
(Figure 2b). A right mouse click on a node will filter the
tree view to only show the selected node and its children.

The tree layout manager places nodes horizontally first
on the basis of their path depth from the root; the nodes
at a given path depth are spaced uniformly from those at
other depths to fill the view’s horizontal dimension. Con-
crete nodes (i.e., leaf nodes) are spaced uniformly to fill the
view’s vertical dimension. The other nodes are placed by
recursively traversing the tree from the leaves to the root;
for non-leaf nodes, vertical position is set to the mid-point
of its children.

Source View. The source code view visualizes a syn-
thetic textual representation of the source code present in
any selected node; generalization variables are displayed
in a larger font size (e.g., PARAMETER VARIABLES and
STATEMENT VARIABLE in Figure 2a) and the commonal-
ities are displayed at the regular font size (e.g., void result
type in Figure 2a). To generate the block of source code, fil-
ters are applied to remove irrelevant information (from the
perspective of comparing and contrasting examples) such as
visibility modifiers and comments as they can cause screen
clutter.

Tag Cloud. The tag cloud represents the frequency of
names within the nodes, considering types, local variables,
formal parameters, fields, and methods (generalization vari-
ables are ignored). Using the maximum and minimum name
frequency and the number of font sizes to be used (6 by
default), we create a font size lookup table using a linear



(a) Initial state. (b) Node selected in hierarchy view.

(c) Substitution variable selected in Source View. (d) Name selected in Tag Cloud.

Figure 2. Guido interactive effects.

distribution model; more frequent names are displayed in
larger font. This allows a developer to quickly see what are
the most common names within the tag cloud as well as the
more unique names. For example, in Figure 2a we can see
the most common names (e.g., newMessage, setMessage,
etc.) but we can also identify more curious, infrequent
names (e.g., XMLObject, WSDLMessage).

Interaction. The interactions with the visualization have
been designed to be simple so as to encourage exploration
and discovery. An action in one view results in the other two
views being updated. In order to help a developer under-
stand the connections between the views, each view has a
unique associated colour to represent selections made from
it: purple for the hierarchy view, blue for the source view,
and green for the tag cloud, as shown in Figure 2.

A selection of a node in the hierarchy view updates
the source view with the generalization and the tag cloud
with the selected generalization node (Figure 2b). Select-

ing a generalization variable or source code element in
the source view will highlight the tags and nodes asso-
ciated with it. For example, selecting METHOD NAME in
the source view of the initial state (Figure 2a) will re-
sult in three tags (setMessage, setMessageName, and
setMessageSource) and three generalized nodes being
highlighted (Figure 2c). The selection of a name from the
tag cloud will highlight the associated source code elements
or generalization variables in the source view and the nodes
that contain that name in the hierarchy view. For exam-
ple, by selecting the name message from the tag cloud,
the generalization variables VARIABLE and STATEMENT

VARIABLE plus 7 concrete nodes and 1 generalization node
in the hierarchy view are highlighted (Figure 2d).

4. Discussion
We examine a number of remaining issues with the ap-
proach.



Tree vs. DAG. Our early attempts at visualizing the gen-
eralization graph used an unfiltered, directed acyclic graph.
Unfortunately, these graphs tend to be non-planar, and in-
teracting with them involves traversing paths from the root
that can quickly become hard to follow; it is not obvious
that 3D visualizations would completely mitigate this. We
opted instead to create a tree structure as described in Sec-
tion 3, as it eliminates those problems at the cost of inflating
the apparent number of unique nodes. Determining which
configuration represents the best choice for example explo-
ration tasks will require further study.

Scalability and performance. The most significant im-
pediments to scaling the technique lie in the cost of the gen-
eralization process, and the availability of screen real estate.

For the first level of generalizations, O(n2) pairs of ex-
amples must be generalized; due to the collapsing function,
iteration quickly converges to a unique root node, but each
generalization can be relatively expensive when examples
are only somewhat similar (closely similar and dissimilar
examples are fast to generalize). We have not yet under-
taken a careful analysis of the asymptotic complexity of
the process or of the bounds on the size of the resulting
graph, but in practice, we have found that computing the
hierarchy for (e.g.) 15 real examples can require about a
minute. Screen real estate becomes a more serious issue
more quickly: with the tree representation, a small number
of examples can create a wide tree that does not readily dis-
play in the space available.

In combination with general usability improvements in
future versions of the tool, we will consider visualization
techniques like zooming and fisheye views for their com-
patibility with the needs of example exploration tasks, to
deal with screen real estate issues. In addition, we are in-
vestigating a pre-processing step that (a) clusters examples
on the basis of coarse-grained similarity, (b) computes fine-
grained similarity only within clusters, and then (c) gen-
eralizes the clusters’ generalized forms; this ought to both
speed the process and eliminate edges that are less likely to
be traversed during interaction.

Implementation and integration. As the tool was in-
tended as a proof-of-concept, the cost of implementing its
user interface was kept as low as possible. The visualization
relies heavily on the Processing environment2 which pos-
sesses significant, low-level conflicts with Eclipse. As a re-
sult, we present the visualization in a separate window from
the Eclipse workbench. It is not clear whether a reasonable
Eclipse perspective could be defined that allowed interac-
tion with the visualization but without obscuring other im-
portant information needed by the developer. For example,
there are cases where the developer wants to investigate the

2http://processing.org

raw example source code in its original context, and possi-
bly simultaneously view their own source code. Screen real
estate has the potential to be a non-trivial issue here as well,
though not an insurmountable one.

5. Conclusion
We have presented Guido: a visual approach that helps de-
velopers to identify commonalities and differences in sets
of source code examples. Guido replaces the traditional list
view with multiple coordinated views that provide the prop-
erties of locality, structure, and distinction for the examples
through the use of structural correspondence. Future ver-
sions of the tool will address some of the issues that we
have identified, at which point, formal evaluations will be
undertaken.

References
[1] R. Cottrell, J. J. C. Chang, R. J. Walker, and J. Denzinger.

Determining detailed structural correspondence for gener-
alization tasks. In Proc. Joint Europ. Softw. Eng. Conf.
and ACM SIGSOFT Int’l Symp. Foundations Softw. Eng.,
pp. 165–174, 2007.

[2] R. Cottrell, R. J. Walker, and J. Denzinger. Semi-automating
small-scale source code reuse via structural correspondence.
In Proc. ACM SIGSOFT Int’l Symp. Foundations Softw.
Eng., pp. 214–225, 2008.

[3] S. Henninger. An evolutionary approach to constructing ef-
fective software reuse repositories. ACM Trans. Softw. Eng.
Method., 6(2):111–140, 1997.

[4] R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach to recommend rel-
evant examples. IEEE Trans. Softw. Eng., 32(12):952–970,
2006.

[5] D. Jackson and D. A. Ladd. Semantic diff: A tool for sum-
marizing the effects of modifications. In Proc. Int’l Conf.
Softw. Maintenance, pp. 243–252, 1994.

[6] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng., 28(7):654–670,
2002.

[7] A. Michail. CodeWeb: Data mining library reuse patterns.
In Proc. Int’l Conf. Softw. Eng., pp. 827–828, 2001.

[8] G. Murphy, D. Notkin, and K. Sullivan. Software reflex-
ion models: Bridging the gap between source and high-level
models. IEEE Trans. Softw. Eng., 27(4):364–384, 2001.

[9] J. Roberts. State of the art: Coordinated & multiple views
in exploratory visualization. In Proc. Int’l Conf. Coordin.
Mult. Views Explor. Vis., pp. 61–71, 2007.

[10] T. Schafer, M. Eichberg, M. Haupt, and M. Mezini. The
SEXTANT software exploration tool. IEEE Trans. Softw.
Eng., 32(9):753–768, 2006.

[11] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Müller.
On integrating visualization techniques for effective soft-
ware exploration. In Proc. IEEE Symp. Info. Vis., pp. 38–45,
1997.


	. Introduction
	. Related Work
	. Guido
	. Discussion
	. Conclusion

