Age-Inclusive Integrated Development
Environments for End-Users

1% Katharine Kerr
Department of Computer Science
University of British Columbia
Vancouver, Canada
kekerr@cs.ubc.ca

Abstract—Computation increasingly pervades modern life in
both the professional and personal realms. An example in the
personal realm is the maker movement, which has helped expose
many end-users to programming. To ensure equitable access
to these new programming domains, it is important to ensure
that the tools being promoted to these communities can be
used broadly. In this paper, we investigate a tinkering-focused
integrated development environment for makers who are engaged
specifically in customizing designs for hand knitting. Through a
controlled experiment with 91 end-users, 32 of whom were over
age 50, we identified trends in how differently-aged participants
worked through their maker design tasks with our integrated
development environment. While older participants found it
more challenging to complete assigned design tasks, participants
of all ages were more likely to succeed if they decomposed
tasks into partially correct programs. However, we found that
successful participants of all ages exhibited common traits of
engagement, experimentation, and curiosity. Users found the
environment engaging and favoured visual feedback both when
making progress and when stuck. Qur results provide insights
into how development environments can be designed to more
inclusively support a broader cross-section of end-users.

I. INTRODUCTION

The maker movement is one of many domains in which
technology has moved into the personal realm. Many kinds
of making require makers to interact with programmatic
representations of their projects in a way that makes them
effectively be end-user programmers. Specific tools are often
used for helping these end-users interact with their projects. A
variety of motivations drive makers, ranging from hobbyists,
to those pursuing job training, through to entrepreneurs [1].
Unfortunately, younger male demographics have an outsized
representation in the maker community [2], [3].

Age has been previously identified as an important design
dimension that should be explicitly supported [4], and age is an
increasingly important trait as the proportion of the population
that is older continues to grow [5]. While 65 has previously
been the threshold used to define ‘older adult’, it has been
suggested that 50 may be a more appropriate threshold to
avoid missing important members of the community [4].
Characterizing approaches as a ‘solution’ to age has been
found to be problematic [6]; in this work we instead set out to
design an inclusive environment for supporting maker tasks in

2" Reid Holmes
Department of Computer Science
University of British Columbia
Vancouver, Canada
rtholmes@cs.ubc.ca

a way that encourages positive tinkering behaviours that will
be accessible to all users independent of their age.

Hand knitters are makers who design, modify, and create
knitwear items by hand as hobbyists, designers, and profes-
sionals [7]. The designs knitters use are written in a domain
specific language that is not easily amenable to customization.
In this paper, we introduce StitchUp, a live programming envi-
ronment for supporting knitters through tinkering as they cre-
ate and evolve knitwear designs. Tinkering is a learning-rich
style of work that is characterized by play, experimentation,
iteration, and engagement [8]. Tools that have been purposely
built to support tinkering have had incredible popularity, with
Scratch having over 100 million users [9], [10]. Tinkering has
also been shown to result in increased test performance in
an educational setting [11] and has been tied to successfully
testing and debugging [12].

For our research, we performed a between-groups con-
trolled experiment with 91 participants: 88 women, 2 men
and 1 non-binary person. Through a mixed-methods analysis
we evaluated results across four age groups, where each age
group contained 17 or more participants. Participants worked
on two design tasks in StitchUp and completed a survey
regarding their experiences with the tool. Participants used a
familiar knitting pattern Domain Specific Language (DSL).We
looked at participants’ experiences in StitchUp to answer the
following research questions:

RQ1: Can age-diverse end users successfully complete design
tasks in StitchUp?

What strategies do age-diverse end users use when
performing tasks in StitchUp?

Are StitchUp’s tinkering features used consistently by

all age groups?

RQ2:

RQ3:

We found that all participants, regardless of age, could
successfully complete design tasks in StitchUp, but the oldest
group (50+) had the highest rate of failure. The 50+ age group
iterated less, took fewer risks, and got stuck at higher rates
than their younger counterparts. Although younger participants
encountered more errors than older groups, they were able
to resolve them more quickly. Lastly, all ages preferred the
visualization of the knitting pattern, as the visual representa-
tion gave them insights into the impact of their DSL changes,

encouraging them to explore design alternatives in an engaged
way. Although older participants were less successful than
younger participants, successful participants, regardless of age,
exhibited common traits of engagement, experimentation, and
curiosity. The contributions of this paper are:

« StitchUp, a tinkering-forward end user live programming

environment for designing hand-knit pattern instructions.

« A study examining how 91 participants, primarily women

ranging in age from 19 to 70+, performed domain-specific

design tasks within this tinkering-forward environment.
¢ Observations about how participants of different ages

engaged with tinkering features as they worked.

The results of our study suggest that investments in en-
vironments that support visualization, iteration, and engage-
ment could increase how successful an age-diverse of end-
user programmers could be which in turn help make these
environments more inclusive.

II. RELATED WORK

As society ages [5], it is increasingly important that
older demographics are not excluded from technological ad-
vances [4]. One lens through which the importance of fairness
and equity in access to technology can be viewed is Universal
Usability [13]; this viewpoint emphasizes the importance of
finding representations that help users to be successful with
technology. Given that makers are disproportionately younger
men, it is unsurprising that the participants for research in this
space is more heavily represented by these groups [2], [3]. The
primary contribution of this work is a controlled experiment
with the opposite demographic, examining the influence of
development environment features for end-user programmers
with more diverse ages and genders.

Tinkering is a mindset that evolved from a construction-
ist style of education where students learn-by-making [14].
While tinkering encompasses a broad range of activities, the
definition we use in this paper for tinkering describes it as “a
valid and valuable style of working, characterized by a playful,
exploratory, iterative style of engaging with a problem or
project” [8]. Tinkering has also been defined more broadly as
developers exhibiting exploratory behaviours, deviating from
instructions, not relying on formal methods, and using trial-
and-error techniques [15]. StitchUp was designed to support
a tinkering-forward interaction mechanism to align the tool
with the positive aspects of the traditional design process
our makers would be familiar with to support Universal
Usability [13].

To determine which tinkering features to support, we
examined research from the live programming community
(e.g., [16], [17]). Live-programming features [10], [18] provide
immediate feedback and insight, an important aspect of tinker-
focused design [8]. Tinkering is an effective approach for
designing and building programs. For example, tools that have
been explicitly designed to encourage tinkering have seen wide
adoption [10], [18]. A core principle when designing these
tools is immediate feedback [8]. Additionally, lightweight
features to let users check their assumptions by evaluating

design alternatives have been found broadly useful to quickly
and concretely compare and contrast the impact of different
design choices. In their study, Kubelka et al. showed that tools
that provide immediate feedback and inspectors that showed
the relationship between code and its impact were most widely
used [19]. Note, in this study 100% of participants were
male. StitchUp explicitly supports immediate feedback and
assumption-checking features.

As far as we are aware, only one tinkering study has explic-
itly looked at age-related factors. This prior study evaluated
the effect of cognitive playfulness on microcomputer training
performance; the average participant age was 41 and 89% of
participants were female [11]. The authors found that increased
cognitive playfulness resulted in increased performance. Our
work extends this prior work by examining whether tinkering-
forward features improves the ability of an age-diverse group
of end-users to perform creative technical tasks.

III. APPROACH

This work investigates how an age-diverse group of end
users can benefit from an environment designed for tinkering.
The environment was custom-tailored to hand knitting tasks
to enable us to recruit a diverse set of end users. There are
millions of knitters, where the majority are female and the
population exhibits broad age diversity [20], [21].

A. Knitters as End Users

The way knitters engage in their craft brings them to an
intersection of tinkering and end user programming.

Knitters Tinker. The maker movement is a catch-all term
that encompasses a broad cross section of creative activities;
‘makers’ are people involved in this space who design and
build things that typically exist in physical space. Tinkering
has deep routes in the maker movement, as makers often
tinker as they explore and build [22]. Knitters are makers who
design and create pieces, such as scarfs and sweaters, through
knitting [7]. In this paper we focus on hand-knitters, rather
than machine-knitters.

While knitters often start from existing designs, they fre-
quently deviate from established designs to personalize or
improve their final knitwear pieces [23]. In this way, knitters
tinker with designs, testing out many solutions until they
achieve an outcome they are happy with. For example, a knitter
might tinker with the neck shaping of a sweater or different
yarn colours in a motif. One of the most popular knitting
patterns has a wiki page devoted to the many modifications
on the original pattern [24].

Knitters Program. Knitting designs are specified in patterns.
Patterns are like programs as they contain ordered, unambigu-
ous instructions. In practice, almost all knitting designs are en-
coded in knitting-specific DSLs. The pseudo-natural language
of knitting patterns has been processed on a large scale into
a computer-readable representation [25] and programmatic
DSLs have been created based on existing patterns [26], [27].

These patterns have an established notation, where symbols
and shorthand are used to describe instructions [28]. This

Steps: Task One Pattern Editor
© ovenic

Gauge Swatch
This swatch is knit back and forth in a 1-by-1 rib

Gauge: 20 stitches by 20 rows

~ Knitting Instructions ~

ing instructions. Located on the right-hand Cast On 24 stitches

1
2
3
4
hat the pattern willlook like. Located 5
6
7
8

9 Round 1: (k1, p1) repeat 12 times.
BB 0 kound 2: (o1, k1) repeat 12 tines.

12 Round 3: (k1, p1) repeat 12 times.
13 Round 4: (pl, k1) repeat 12 times.
Pattern Visual (right-side of work) 15 Repeat Rounds 3 and 4, 4 more times.

RGO

)
5

Sy

30

= ~

=
o

)

SRR

TR

NN
Ehh
00050
LT
EEnnEEEY

5050

bte

Y

Fig. 1: The StitchUp IDE as configured for the first study
task. The upper-left quadrant contains the study instructions,
the lower-left quadrant shows a visual representation of the
pattern, and the right-side contains the pattern editor.

Y

notation is colloquially referred to as knit-speak. Each row
in knitting is made up of stitches, most commonly knit and
purl stitches, and each row is built off the row below it. Knit-
speak is used to specify what stitches form a row and the order
in which the rows should be knitted to form the knitted piece.

A definition of a round (row) in knit-speak might look like:

Round 1: (k1, p2) 3 times.

The k and p represent the type of stitch, knit and purl
respectively. A purl stitch is the opposite of a knit stitch as it
is a knit stitch viewed from the back of the finished piece. The
numbers represent the number of times the stitch should be
repeated. k1 tells the knitter to knit one stitch and p2 to purl
two stitches. The round brackets represent a set of stitches to
be repeated, so in this case the knitter should knit one stitch
and then purl two stitches and repeat this three times.
Knitters interpret a written pattern and translate it into
the physical space with yarn and needles. Due to the time
required for this translation step, knitters spend considerable
effort ensuring the design they are knitting (encoded in the
pattern) matches their needs and expectations. Knitters create
and modify these patterns (programs) to design pieces and
then execute the programs to build them, similar to how
a computer executes code. In this way, knitters are end
user programmers, where they write, modify, and interpret
programs to accomplish their domain-specific tasks.

B. Supporting Tinkering In StitchUp

The StitchUp environment was created to allow knitters to
interactively design knitting patterns. The core design princi-
ples for the environment were chosen to enable tinkering. The
environment aims to support immediate feedback, fluid ex-
perimentation, and open exploration, as these three properties
have been previously identified as core principles for enabling
tinkering [8]. The first two principles, immediate feedback and
fluid exploration, complement each other as they allow a user
to easily iterate through design alternatives and quickly see the

results of these iterations. StitchUp supports these with a live-
updating view that continually shows a visual representation
of a pattern. StitchUp supports open exploration by allowing
knitters to creatively express themselves in a knitting-specific
DSL, allowing them to experiment with different sequences of
stitches and rows to express alternate designs.

StitchUp consists of two primary parts: the Pattern Editor,
where users modify knitting patterns, and the Pattern Visual,
where users can view a fabric representation of the pattern;
these are shown in Figure 1. The environment consists of four
main features to encourage and support tinkering with designs.

1) Feature 1: Live Editing: As a user edits a design in
the pattern editor, StitchUp updates the pattern visual every
200 milliseconds (ms), providing immediate feedback for any
changes they make to their design. This interaction between
editing the pattern (program) and the immediate update of
the visual representation of the program makes StitchUp
a live environment [17]. This liveness also represents the
core technique enabling rapid tinkering in the environment
supported through immediate feedback and fluid exploration.

The live visualization link between the pattern editor and
the pattern visual is supplemented by three additional features.
Each of these features is elaborated further below.

2) Feature 2: Row Inspector: The row inspector connects
each row of text in the pattern editor to its representation
in the pattern visual. A user enables the row inspector tool
by clicking on the ‘Row Inspector’ button and then hovers
over different rows in the pattern visual to see which lines
are highlighted in the text editor. As the cursor moves over
the rows they are highlighted in yellow and blue in the two
representations as shown in Figure 2.

The row inspector allows users to inspect how the program
is running. Seeing this link is a part of the first tinkering
principle, immediate feedback, and inspectors are the most
frequently used tools in live programming environments [19].

1 Cast On 8 stitches.
2 Round 3: (k1, pl) repeat 4 times.
3 Round 4: (pl, k1) repeat 4 times.

N Y
Fig. 2: The Row Inspector allows users to highlight over either
a row of text in the DSL, or a portion of the diagram in the
live view, and have the corresponding entity highlighted.

3) Feature 3: Error Inspector: There are two kinds of errors
in StitchUp: syntactic errors and semantic errors. Syntax errors
occur when the user writes a code fragment that does not
conform to the DSL. Semantic errors occur when the knitted
pattern is physically not possible to hand-knit. In knitting,
each row builds on the previous row and unless new stitches
are added (via increases) or are removed (via decreases), the
number of stitches in the previous row must be the same as
the number in the current row [25]. If the expected number
of stitches in a row, which is the number of stitches in the
previous row plus any stitches increased minus any stitches
decreased, does not equal the actual number of stitches, a
semantic error occurs.

Semantic errors are highlighted to the user in two places:
a red highlight will colour the row of stitches in the visual
representation and a red box with an ‘X’ beside the corre-
sponding line in the text editor, as shown in Figure 3. For
syntactic errors, only the red box with an ‘X’ beside the
corresponding line will appear as that line cannot be parsed so
it will not appear in the visual representation. In both cases,
if the user hovers over the ‘X’ with their cursor, a message
will appear explaining the reason for the error. Visual error
signaling enables users to quickly determine when they had
an issue and the cause of the error.

1 Cast On 8 stitches.
2 Round 3: (k1, pl) repeat 4 times.
B3 Round 4: (pl, k2) repeat 4 times.

Fig. 3: The Error Inspector helps the user discover the cor-
respondence between a DSL error and where this problem is
manifested in the visual output of the pattern.

4) Feature 4: Undo, Redo, and Reset: Undo, redo, and
reset features were included to increase risk taking and to
support repeated tinkering. Repeated tinkering occurs when a
user makes an action and their next action immediately reverts
that change [12]. Undo reverts the last text change, measured
as the text that changed within a 200ms interval. Lastly, redo
reverts undo and reset actions in reverse-chronological order.

C. DSL Design

The semi-standardized notations used by knitters allowed us
to build a knitting-specific DSL with which knitters would be
immediately familiar [28]. We created our own DSL because
while there are existing knitting DSLs, current solutions are
either not formally defined [26], or contain notations designed
for professional programmers rather than end-users [27].

The primary design goal for our DSL was to build a similar
language to knit-speak which is used in practice. To build
our knitting DSL, we reviewed the most popular patterns
on Raverly, a pattern database which contains over 500,000
knitting patterns [29]. We examined several of the top patterns
and created a DSL that minimally bridged the differences
between these patterns. We added flexibility to our language
by ensuring that capitalization, commas, and periods did not
affect compilation [26]; lines that did not start with a DSL
keyword were comments, as is common domain practice.

Figure 4 contains an example of how the text from a
knitwear pattern is represented in our DSL. The Raverly
instructions and StitchUp version create the same fabric in the
visual representation. StitchUp uses colour to visually signify
parts of the language. The beginning of rounds were coloured
blue, the stitch specifications green, and the repeats red.

IV. METHODOLOGY

We created the StitchUp environment to enable knitters
to interactively design and explore knitting patterns with
tinkering-inspired features. To answer our research questions,
we performed a controlled experiment with a between-groups

design where every participant used the StitchUp environment
and were assigned to groups based on their age. The age
groups were 19-29, 30-39, 40-49, and 50+. These age groups
were chosen between participants needed to be 19 to take
part in the study and prior research [4] suggested that 50
is a more appropriate age threshold to avoid minimizing the
concerns of older users. The experiment consisted of a 25-
minute online study where participants performed two tasks
using StitchUp and answered survey questions about their
experience.! We chose this methodology in order to better
compare age-based cohorts in a controlled setting. The findings
from this experiment will be used to improve the StitchUp
environment before evaluating more open-ended design tasks
in a future study.

A. StitchUp Prototyping

Before releasing the study to the public, the study, and
consequently StitchUp’s design, went through five testing
iterations to ensure participants could understand the task
descriptions and understand how to use StitchUp. These it-
erations were crucial to ensure that the tasks and tool were
easy enough to understand to complete in the time available
to our experimental participants. Each iteration involved a
tester whom had no prior knowledge of the study or StitchUp.
During testing, the tester completed the study while an author
observed, and the tester was encouraged to speak aloud as
they worked. At the end of each tester’s session, the study and
StitchUp were revised based on their feedback. For example,
we removed a confusing interactive tutorial and replaced it
with a short video introducing StitchUp. We stopped after
five rounds of updates as the last tester did not encounter
challenges that required changing the protocol or tool. The
testers were diverse, the youngest in their 20s and three being
50+ and had varying knitting and programming experience.

B. Tasks

The study consisted of two tasks. The first was a training
task that introduced StitchUp before giving participants open-
ended prompts so they could explore and tinker within the en-
vironment. The second experimental task reviewed StitchUp’s
features again, before asking participants to evolve a pattern
design. Before joining the study, participants were provided
with a consent form outlining what they would expect, the
risks associated with the study, and a description of the study
compensation. For compensation, participants could enter a
raffle for one of five knitting prizes such as yarn or specialty
bags for holding knitting supplies. After consenting to the
study, participants completed an entrance survey that collected
demographic information and played a short video demon-
strating how StitchUp worked. They filled out a short survey
after each task that reflected on the task. At the conclusion of
the study participants completed an exit survey that contained
open-ended questions about their experience with StitchUp.
Both the training task and experimental task were broken down

IThe study was approved by the University of British Columbia’s Research
Ethics Board [Certificate #H22-03556].

(" [a]cosss. R

E Row 1: *¥k2, p2, repeat from * across.
Row 2: Knit.

\ Repeat Rows 1-2 until Scarf measures about 1.

2 <

(Cast on 8 stitches.)

Round 1: (k2, p2) repeat 2 times.
|C|Round 2: k8.

\Repeat Rounds 1 and 2, 2 more times. J

J

Pattern Instructions

BN

o]
)]

| D [€]: Repeat
) Rounds
<_

: Round 2

: Round 1

: Cast On

I
C
B
A

: Kanit Stitch - Purl Stitch

DSL Representation

Visual Representation

Fig. 4: A diagram representing how instructions from a pattern are represented in our DSL and the corresponding visual shown
in StitchUp. The pattern instructions are from the Heartwarming Knit Scarf by YarnInspirations and have been slightly modified

to reduce the size and complexity [30].

into steps which would progress the participant through the
task. The survey questions, and training tasks have been made
publicly available.?

Training Task. Participants were first introduced to the
StitchUp environment with an 80 second video® and an
interactive guided walkthrough tutorial. The walkthrough was
anchored by a small pane that provided instructions for each
step and how the participant could use the tool to perform it
(see the top-left pane of Figure 1). Participants could move
between the steps in the tutorial with next/previous buttons
present below each set of instructions, but could also navigate
to any past or future steps by selecting them from the list
of steps above the instructions. The tutorial described each
feature of StitchUp while asking the participant to complete a
step that used a specific StitchUp feature:

1) Edit the pattern to introduce a semantic error, which
triggered a red highlight row in the pattern visual and
ared ‘X’ in the pattern editor.

2) Use the Row Inspector to highlight the error visually.

3) Use the Error Inspector by hovering over the red ‘X’ to
see the error message.

4) Use the ‘Undo’ or ‘Reset’ buttons to remove the error.

After completing these steps, participants were provided with
a few open-ended design suggestions that they could use to
try to tinker with their design from the tutorial task.

Experimental Task. A guided walkthrough pane was also
used to describe the experimental task, but in this condition
the steps only included instructions that described what the
participant was to perform, not how to accomplish it. As with
the tutorial task, participants were able to navigate between
the instructions for the different steps at any time. The steps
for the experimental task were:

1) Review the tool by editing a specific line in the pattern
and viewing the change in the pattern visual.
2) Read a short pattern for a sweater sleeve.

2www.katkerr.ca/projects

3https://www.youtube.com/watch?v=30Z0SgzW0m0

3) Solve a problem: Add a cuff to the sweater sleeve pattern,
with a specified stitches (width), specified rows (length),
and given texture (stitch combination).

For the experimental task, we developed a 5-point rubric to
objectively score how participants performed:

1) Failure: The cuff had the wrong texture, the wrong
number of rows (too short or too long), or was missing.

2) Wrong Texture: The cuff has the correct width and length,
but it had the wrong texture. We asked participants to
create a cuff of one-by-one ribbing which is k1, pl, so
an incorrect texture might be k2, p2.

3) Too Short: The cuff has the correct width and texture but
too few rows.

4) Too Long: The cuff has the correct width and texture but
too many rows.

5) Success: The cuff had the right width, length, and texture.

Both the training task and experimental task were timed and
the participants were directed to the survey after their time
expired. To minimize frustration for participants, those who
wanted more time to explore their designs could repeatedly
extend the experimental task by two minute increments.

C. Participant Recruitment

The target population for our study was people who are fa-
miliar with knitting instructions. Since StitchUp is a browser-
based tool, the study was run remotely and asynchronously.
By building a browser-based environment and using online
surveys we were able to have an easily communicated and
shared link. To reach our target audience we deployed two
recruitment strategies: snowball recruitment, and sharing on
social media.

For the first strategy, snowball recruitment, we asked our
personal network of knitters and friends to share the study
with those they knew were knitters. The final page of the
study thanked participants and asked them to consider sharing
the study with one or two knitters. Also, one author worked
at a knitting store and the store owner distributed the study
information to all other staff members.

We also used social media by publishing the study details
on Instagram and YouTube. The five prizes for our study
were knitting related and were purchased from fellow local
artisans. Many participants chose to re-share our Instagram
posts, including two of the creators of our prizes and a
prominent local knitting conference account. In addition, the
website for our study hosted a free pattern which the researcher
had designed themselves. Through all the above methods,
155 people started our study.

D. Tool Data

The StitchUp environment was heavily instrumented to
learn how participants interacted with the environment; we
measured all clicks, hovers, and typing events. Each action was
recorded as an event containing the timestamp of the action,
who performed the action (via an anonymized id), which task
the action was performed in (training or experimental), the
name of the action, and a general field for any additional
information about the action (like the text in a typing event).

Each environment feature had corresponding actions. The
Row Inspector had click and hover actions as a user clicks
to enable the feature, hovers over the visual rows to inspect
them, and then clicks again to disable the feature. The Error
Inspector had hover actions as a user hovered over the error to
see the detailed error message. However, errors arose through
a participant typing a semantically- or syntactically-invalid
pattern. Through analyzing the text within the editor, we can
determine when an error occurred and whether it was semantic
or syntactic. Undo, redo, and reset were recorded through
click actions as they were performed by clicking a button.
In addition, there were start task, end task, and extend task
events. Lastly, we recorded which step of the tasks users were
on, by recording click events on the next/previous step buttons.

E. Data Analysis

All open-ended questions were analyzed with an open
coding approach [31]. Responses were split into one-sentence
segments. Three coders met together and collaborated as a
group to assign all sentences to codes, creating new codes
as needed. Two subsequent rounds of theoretical coding were
subsequently performed by one author. During this process the
initial codes were organized into a hierarchy, and then each
quote was reviewed to ensure it was assigned a code that fit
the quote given the final hierarchy.

The collected tool usage data was analyzed for each par-
ticipant for each task to identify which features they engaged
with. The experimental task rubric was manually applied to
the final programs for each of the participants to assign them
a performance score for this task.

V. RESULTS

To answer our research questions about participant’s
StitchUp experiences, we performed a mixed-methods analysis
combining the qualitative data for each participant’s thoughts
and quantitative tool data for each participant’s actions.

A. Participant Demographics

Over 6 weeks, 155 people started our study; however,
we required complete responses for our analysis, so the
55 participants who did not finish the study were removed
(65% completion rate). The remaining 100 participants who
completed the study were reviewed; an additional 9 were
removed due to: bad participant fit (4 people), choosing not to
answer the age question (1 person), having no interaction with
the training or experimental task measured by no typing events
(3 people), or taking a break over 10 minutes while working
on a task (1 person). The reasons for removing a participant
due to bad fit were: being unfamiliar with knitting instructions
(2 people), completing the study on a tablet (1 person), or
completing the study with a friend (1 person). Ultimately, 91 of
the original 155 participants remained in the study.

The final pool of participants were age-diverse: ages 19-29
(17 people), ages 30-39 (21 people), ages 40—49 (21 people),
ages 50-59 (13 people), ages 60-69 (15 people) and age 70+
(4 people). In alignment with prior findings [4], we combined
the final three groups into one 50+ age group (32 people).
Of the 91 participants, 88 were women, 2 were men and
1 was non-binary. Participants self-reported their experience
in two dimensions that could influence their ability to use
StitchUp: domain experience (knitting instruction familiarity)
and programming experience. Chi-square tests showed no
significant differences between the age groups with respect
to knitting instruction experience; however, the 19-29 group’s
programming experience was significantly different than the
others (p = 0.02), with a trend towards more programming
experience. Participants are referred to as pl — p91.

B. Code Book

We coded over 1,200 sentences from 534 participant
responses to develop a hierarchical code book containing
88 codes. The topmost categories were Experiences, Tool
Suggestions, Study, and Noise. Since we coded individual
sentences from long answer responses, the noise category was
necessary to code sentences that were unrelated to the study,
tool, or domain; for example, when a participant’s response
could not be understood (Unable to Decipher), or if they
mentioned they had answered a question previously in the
survey (Already Answered). Only eight responses were solely
categorized as noise (<2%).

To answer our three research questions we focus on Expe-
riences, the most popular category of responses. The Experi-
ences category contains 51 codes split into the following sub-
categories: Overall Experience, Task Completion Experiences,
Feature Experiences, Domain Experiences, and Emotions.

To investigate RQ1, we examined the success rate for the
experimental task. RQ2 examined participant’s Task Comple-
tion Experiences and how they iterated towards successfully
completing the experimental task. Lastly, to investigate RQ3,
we examined participant’s Feature Experiences for all tasks.

C. RQI: Age-Diverse Task Success

RQ1: Can age-diverse end users successfully complete design
tasks in StitchUp?

Our first research question sought to investigate whether all
age groups could be successful at the experimental task; to do
this we compared the results from each of the groups from our
between-groups experimental design with respect to whether
they could complete their assigned task. Although the goal of
design exploration tasks is not typically time minimization, the
experimental task had a clearly-defined definition of success;
consequently we measured success with respect to whether the
stated task was accomplished in the provided time.

To incorporate both success and time to task completion, we
performed a Survival Analysis on participant data [32]. In the
context of our study, survival means that a participant has not
solved the task at a given point in time. The survival curves
for our participants, split by age, can be seen in Figure 5;
although the curves in this figure have significant overlap, one
can observe that the 95% confidence intervals for the 50+
group have minimal overlap with the confidence intervals for
the other groups. As participants could extend the time they
had available for each task as they liked, we chose 19 minutes,
the maximum time that any participant decided to spend on
the task, as the censoring threshold for our analysis. As the
flat tails of the curves suggest, few participants benefited from
taking extra time and none made additional progress after 8
minutes on the experimental task. A log-rank test shows that
there is a statistically significant difference between one or
more of the survival curves for the different age groups (df =
4,x% = 12.41,p = 0.01). A pairwise analysis further shows
that there is a statistically significant difference between the
50+ age group’s survival curve and all remaining groups (19—
29 :p < 0.005,30 — 39 : p < 0.005,40 — 49 : p = 0.02). The
remaining pairwise combinations amongst all other age groups
are not statistically significant.

This analysis demonstrates that participants in the 50+ age
group were meaningfully different in terms of experimental
task success than their 19-49 year old peers. Additionally, the
50+ age group struggled more than the other groups, exhibiting
the lowest success rate with the experimental task (9% success)
compared to participants aged 19-49 (34% success). Given this
difference (and in the interest of space), for the remainder of
the paper we report all results with these two groups in mind:
1949 (59 participants) and 50+ (32 participants).

- { RQ1 Summary }

While participants from all age groups were able to
succeed, the task completion analysis showed that
the 50+ age group was less likely to complete the
experimental task, as the rate at which they completed
the task was significantly different than the other age
groups.

1.0 —|_|_|

@ 0.8

8

o

T 0.6

g — 50+ |

F 041 40-49

=

@ gg] — 3039
— 19-29

0.0_ T T T T T T T T T
0.0 2.5 5.0 75 0.0 125 15.0 175 20.0
Time (min)

Fig. 5: Kaplan Meier Survival Curve for the experimental task.
The curves are split by participant age group; shaded areas
are 95% confidence intervals for each curve. The difference
between the 50+ curve and each other curve is statistically
significant, but the remaining curves are not statistically sig-
nificantly different from each other.

D. RQ2: Farticipant Task Strategies

RQ2: What strategies do age-diverse end users use when
performing tasks in StitchUp?

The two sub-codes below Task Completion Experiences
revealed opposing states that participants transitioned through
while working on their tasks: Tinkering and Stuck. We ex-
amined the experimental task data to gain insights into how
participants progressed through their tasks.

1) Code Book Analysis: When a participant is Tinkering,
they feel like they are making progress on their task. When
they are Stuck, they enter a state where they are not making ef-
fective progress. Both the Tinkering and Stuck codes contained
two subcategories each: State of mind and Enabling. The
majority of participants made comments related to Tinkering
(60%) and almost half to being Stuck (48%). Next we further
examine what State of mind the participants were in and what
Enabled them to have these Task Completion Experiences.

2) Tinkering: In terms of their State of mind, participants
made comments about being Engaged, Curious, and Confident
while they were Tinkering with their designs. Engaged was the
most commonly mentioned state of mind, with roughly a third
of participants making a statement that showed engagement.
We modeled engagement with the ‘Tinkering Learning Dimen-
sions’, where engagement is characterized as an investment
in time, thought, and emotion and can be indicated by play,
exploration, and emotional investment [33]. Not all emotional
investment needs to be positive:

“Great interest, with a sprinkling of frustration at getting
used to the interface and syntax” - p88 (50+)

“Just by visualising a sleeve for instance and how different
it may look with different ribbed patterns made me smile
and wanted to play with it” - pA7 (40 — 49)

Curiosity was a prominently mentioned emotion:
“Puzzled but not frustrated” - p40 (40 — 49)

Several Enabling codes, which capture entering the Tinkering
State of mind, captured how participants felt they were able

to make progress. For example, Experimenting was often
mentioned as it helped with alternative evaluation:

“You can see in the visual how the pattern changes and
you can see if something is wrong with the stitch count
right away. And it encourages to try something new.” -
p85 (50+)

The Low risk for changes code was frequently cited as a
benefit of digital experimentation relative to the effort required
to actually knit a physical piece. Finally, several participants
reflected on how they were able to Become unstuck, which
often related to reviewing error-free parts of the pattern or the
instructions for syntax hints.

“I got stuck on the problem of making the row repeat, I
figured it out by looking back at how the pattern coded
row repeats and taking that action.” - p70 (50+)

3) Stuck: Almost half of participants made references to
being Stuck (48%). The Stuck State of mind codes are Con-
fused and Stuck. These codes relate to participants exclaiming
they are confused or stuck, whereas the Enabling codes relate
to how they got stuck or what lead to the confusion. 42% of all
participants mentioned encountering confusion due to syntax,
the visual representation, or the domain. Syntax confusion was
the most common, with 32% of participants mentioning some
problems forming the correct syntax:

“A couple times I tried putting in notations that weren’t
supported by the program, I tried working around this
by trying to put it in terms I thought the program would
understand.” - pl (19 — 29)

Visual confusion occurred when there was a divergence be-
tween what the participant expected to see and what StitchUp
actually displayed for them:

“Why did it show the first stitches at the bottom vs. the
top? maybe because that’s what will happen as you knit
the piece. I kind of thought that it’s order would line up
with the instructions.” - p61 (50+)

4) Experimental Task Data Analysis: We examined the
experimental task data in two ways: first, by analyzing the
Tinkering and Stuck states in terms of sessions (Figure 6) and
secondly, by analyzing the states participant’s moved through
to complete the task based on our success rubric (Figure 7).

We partitioned each participant’s environment event streams
into sessions. ‘Tinkering’ sessions occurred when a sequence
of events occurred that contained no errors. ‘Stuck’ sessions
occurred when at least one error was being displayed to the
participant. In this way, a participant could iterate between
tinkering and stuck sessions multiple times while completing
a task. In terms of average sessions, the 50+ group had fewer
tinkering and stuck sessions (avg 2.8 and 2.2 sessions) than
19-49 group (avg 4.3 and 3.7 sessions). The 50+ group had
more events in both their tinkering and stuck sessions (median
19 and 17 events), relative to the 19—49 group (median 15
and 14 events). There was one session with greater than

100 events in the 50+ group and two sessions with greater
than 100 in the 19-49 group. Figure 6 shows box plots of
the tinkering and stuck session lengths and average events
per session per participant. This shows that while younger
participants introduced more errors, they also required fewer
events to resolve them. These quick transitions through stuck
states resulted in the younger participants being able to explore
more alternatives, which may have contributed to their overall
higher success.

Based on the survival analysis, we examined how partic-
ipants moved through the experimental task for two groups,
those aged 19-49 (59 participants) and those aged 50+ (32 par-
ticipants). Figure 7 depicts how these two groups progressed
through the experimental task. We evaluated the intermediate
states of the 91 programs according to our rubric, described in
Section IV, to determine how each participant generated their
final pattern. While the results show a higher proportion of
participants failing to make meaningful progress in the 50+
group, a more interesting finding is that the 19—49 group
were better able to transition through partially-successful
states by trying different alternatives. For example, for the
19-49 group we observed participants making designs that
transitioned from wrong texture to too short to too
long before finally reaching success. These incremental
transitions through multiple partial success states was far more
common for the 19-49 group (83%) than the 50+ group (34%).

{ RQ2 Summary }

Participants in the 50+ age group were less likely to
evolve their patterns through different partially-correct
solutions than their younger counterparts (Figure 7).
Also, the 50+ age group spent longer in each tinker-
ing and stuck session and iterated less between the
tinkering and stuck sessions (Figure 6).

Tinkering: Events Per Session

s Tinkering: Number of Sessions

10.0 4 60
7.5

404
5.0 4

201

19-49 50+ 19-49 50+

2.5

I

0.0

Stuck: Events Per Session

o
@ o
: %

} f 0 ! i
19-49 50+ 19-49 50+

Fig. 6: Box plots of the number of sessions and the events
per session for tinkering and stuck states. Three outliers were
elided from ‘Stuck: Events Per Session’ for consistent y-axes:
109 and 319 from 19-49 and 139 from 50+.

Stuck: Number of Sessions
12.5

10.0 4 60

7.5 1
401

2.5-_'_1 ; 2]

0.0

Failure: 39

Start: 59

Too Short: 18 |

Wrong Texture: 37

Success: 20
Too Long: 13

(a) 19 — 49 (n = 59)

Failure: 29
Start: 32

Too Short: 6 I
Wrong Texture: 6

Too Long: 4 I Success: 3 I

(b) 50 + (n = 32)

Fig. 7: Sankey diagrams showing how the different groups evolved their solutions during the experimental task. Most successful
solutions evolved through more than one partial-success state, which was more prevalent for the 19—49 group.

E. RQ3: StitchUp Tinkering Feature Usage

RQ3: Are StitchUp’s tinkering features used consistently by
all age groups?

Participants provided a broad array of comments about the
tinkering environment features.

The Pattern Visual feature was mentioned by two-thirds of
all respondents (66%). The most common kind of feedback
about the live updating visual was that participants Enjoyed
having visual feedback for their changes (36% of participants).
For example,

“I love that there’s a visual representation that updates as
you adjust the pattern.” - p4 (19 — 29)

22% of participants specifically mentioned enjoying the live
nature of the visual view and its immediacy after changes:

“I really liked how edits to the pattern were immediately
reflected in the visual. That was very helpful.” - p24 (30 —
39)

Many participants (20%) talked about how they used the
visual representation to either confirm a hypothesis or that
they learned something from the visual aspect of a change.

“That the visual is very important in ensuring the accuracy
of the written pattern” - p52 (40 — 49)

The Error Inspector (21%), Row Inspector (13%), and
Undo, Redo, and Reset (9%) were mentioned less frequently,
although this feedback often mentioned how they helped with
iteration:

“it was easy to change things or undo if I didn’t like it.
The visual updating of the row inspector made it easier to
see what was happening.” - p29 (30 — 39)

Examining the tool usage data, we see that participants
infrequently used the Undo, Redo, and Reset feature (only
14% used it more than once for the experimental task).
The row inspector, which had to be manually engaged, was

used more frequently (55% invoking it more than once).
When the row inspector was invoked, participants used it to
examine how an average of 6 lines of DSL mapped to their
visual representation. The error inspector, which highlighted
syntactic and semantic errors in the DSL, was used the least
(12% invoking it more than once); however, it was used in
ways we did not expect. Given the difference in solving the
errors introduced by the different age groups in Section V-D
highlighting these errors in the visual view was likely more
helpful for the younger participants than the older ones. The
data shows that stuck sequences were longer (67 events on
average) when the error message was examined, compared to
stuck sequences where the error message was not examined
(16 events on average). This further reinforces the hypothesis
that the visual view was more likely used to resolve errors, as
they error inspector was turned to as a last resort.

When examining the tinkering and stuck sessions in Sec-
tion V-D, a primary difference between the two groups is not
specific tool features that are used, but how the tools are used.
This is most prominently visible in terms of the iterations
(sessions) that the two groups underwent, as is shown in
Figure 6. From these box plots we can see a decreasing trend
in the number of iterations for the groups as the age increases.
Some older participants explicitly expressed concern about
introducing errors while they worked:

“I didn’t play because I thought I would mess it up” -
p69 (50+)

- { RQ3 Summary } ~

Across age groups, the immediate visual representa-
tion was the most used and best perceived StitchUp
live programming feature. Supporting rapid iteration
seems to be more important than specific environment
features.

VI. DISCUSSION

Our goal was to evaluate a tinkering-focused environment
with an age-diverse group of users to learn whether live
programming features could provide insight into the age-
inclusivity of tooling for supporting making activities.

a) Mindsets While Working: While working through the
tasks, participants reported states of mind and working styles
analogous to tinkering: engagement, curiosity, experimentation
and working through problems (becoming unstuck) [8]. Inter-
estingly, participants who were able to successfully complete
the experimental task were more likely to mention engagement
(3.6 times), curiosity (1.8 times), and experimentation (1.1
times) when compared to unsuccessful participants. These re-
sults corroborate previous findings where cognitive playfulness
was linked to increased performance [11].

b) Iteration and Success: While the analysis in this work
has focused mostly on age differences while engaging with
tinkering environment features, participants of all ages were
successful with the experimental task. This shows that age
is not a discriminator that makes in impossible to succeed,
suggesting that perhaps how successful participants worked
could also provide clues for success. Comparing successful
participants to unsuccessful participants, ignoring age, reveals
some additional interesting features: Successful participants
iterated more when working through their tasks, on average
moving between two partially-successful solutions before end-
ing at success as seen in Figure 7. Unsuccessful participants
moved through an average of 0.5 states before ending at fail-
ure. Successful participants also had more stuck and tinkering
sessions (avg 12) than unsuccessful participants (avg 5).

Importance of Iteration. While participants of differing
@ ages interacted with the provided tools in unequal ways,

unsuccessful participants, across all ages, had similar
behaviours. This suggests that encouraging successful be-
haviours, in particular encouraging iteration, may be one
way to improve overall tool effectiveness providing an
important pathway for older participants to be successful.

c) Relationship to Programming IDEs: StitchUp draws
inspiration from existing live programming tools that are
built into Integrated Development Environments (IDEs). How
the end-users in our study interacted with StitchUp’s live
programming tinkering features could provide insight into how
older end-user programmers might interact with these kinds
of features in more traditional IDEs. The same tensions that
led us to examine how older people should be supported in
maker communities also applies to software programming as
populations age.

A. Threats to Validity

Our goal with this work was to discover how environment
features supported or inhibited users of differing ages.
Construct Validity. We stratified ages into four groups, al-
though we acknowledge the cutoff between each of these
groups mean that a 39 year-old and a 41 year-old are treated

more differently than their two year age gap might suggest is
relevant. While it may not be surprising that participants under
50 had greater task success than those over 50, a meaningful
portion of software developers are above 50 years of age and
supporting them can only help tools to be more effective for
the overall population [34].

Internal Validity. Selection biases may have influenced who
chose to take our study. While technically-literate knitters
may have been more likely to choose to take the study,
the balanced set of ages suggests this is either unlikely, or
that the demographics of knitters more broadly skews older,
increasing the pool from which the participants in the older
age groups could be drawn from. Additionally, we relied on
participant-supplied data for their ages, genders, experience
with programming, and experience with the knitting domain.
Lastly, over a third of participants chose to extend the time
within the tool while working on the experimental task, which
shows the task time was short and might have added time
pressure and stress on participants. We alleviated this stress
by allowing participants to extend their time.

External Validity. There are three primary threats to the
generalizability of the results in this work. First, the primary
demographic factor we considered was age. Unfortunately, as
97% of our respondents were women, we were unable to
consider gender demographics, and since we did not collect
cultural background demographics, we were unable to consider
them within our analysis. Second, our study only analyzed
users in the specific domain of knitting design. Finally, it
remains future work to investigate how our analysis will hold
for other programming domains.

VII. CONCLUSION

As populations age it is crucial to ensure that older users
remain equitably supported by technical innovations. We cre-
ated the StitchUp environment to evaluate how an age-diverse
set of end users were able to perform maker tasks within
an environment that encouraged and supported tinkering. Our
between-groups study investigated how 91 participants inter-
acted with the StitchUp environment to complete knitting de-
sign tasks. Through a mixed-methods analysis, we found that
participants enjoyed the immediate visual feedback provided
by the environment which enabled them to rapidly experiment
with their designs and gain insight and confidence in how their
changes to the DSL for their pattern corresponded to changes
in their design. Participants of all ages were able to complete
their tasks, but the oldest participants had the highest failure
rate. Examining their task completion behaviour, we found that
older participants took fewer risks and iterated less on their
designs, while spending more effort trying to get unstuck when
they encountered problems. Younger participants were more
willing to move through partial-success states while work-
ing. This suggests that one approach for improving the age-
inclusivity of programming environments may be to encourage
iteration through mechanisms that are perceived positively,
enabling users to see their progress as they work.

[1]

[2

—

[3

[t

[5

=

[6

=

[7]
[8]

[9

(10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. S. Hui and E. M. Gerber, “Developing makerspaces as sites of
entrepreneurship,” in Proceedings of the Conference on Computer Sup-
ported Cooperative Work and Social Computing (CSCW), 2017, pp.
2023-2038.

T. Capel, B. Ploderer, and M. Brereton, “The wooden quilt: Carving out
personal narratives in a women-only makerspace,” in Proceedings of the
Designing Interactive Systems Conference (DIS), 2020, pp. 1059-1071.
D. Dougherty, “Maker market study,” 2012. [Online]. Available: https:
//cdn.makezine.com/make/bootstrap/img/etc/Maker-Market- Study.pdf
A. Lazar, M. Diaz, R. Brewer, C. Kim, and A. M. Piper, “Going gray,
failure to hire, and the ick factor: Analyzing how older bloggers talk
about ageism,” in Proceedings of the Conference on Computer Supported
Cooperative Work and Social Computing (CSCW), 2017, pp. 655-668.
GBD 2017 Population and Fertility Collaborators, “Population and
fertility by age and sex for 195 countries and territories, 1950-2017:
A systematic analysis for the global burden of disease study 2017,”
Lancet, vol. 392, no. 10159, pp. 1995-2051, Nov. 2018.

J. Vines, G. Pritchard, P. Wright, P. Olivier, and K. Brittain, “An age-old
problem: Examining the discourses of ageing in hci and strategies for
future research,” ACM Transactions on Computer-Human Interactions
(TOCHI), vol. 22, no. 1, Feb 2015.

D. Dougherty, “The maker movement,” Innovations: Technology, Gov-
ernance, Globalization, vol. 7, no. 3, pp. 11-14, 07 2012.

M. Resnick and E. Rosenbaum, “Designing for tinkerability,” in De-
sign, Make, Play: Growing the Next Generation of STEM Innovators,
M. Honey, Ed. Routledge, 2013, p. 19 pages.

Scratch. (2015) Scratch statistics - imagine, program, share. [Online].
Available: https://scratch.mit.edu/statistics/

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, p. 16, 2010.

J. J. Martocchio and J. Webster, “Effects of feedback and cognitive play-
fulness on performance in microcomputer software training,” Personnel
Psychology, vol. 45, pp. 553-578, 2006.

L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook, “Tinkering and gender in end-user pro-
grammers’ debugging,” in Proceedings of the Conference on Human
Factors in Computing Systems (CHI), 2006, pp. 231-240.

B. Shneiderman, “Universal usability,” Communications of the ACM
(CACM), vol. 43, no. 5, p. 84-91, May 2000.

S. Papert and I. Harel, “Situating constructionism,” in Constructionism,
S. Papert and 1. Harel, Eds. Ablex Publishing, 1991.

S. Krieger, M. Allen, and C. Rawn, “Are females disinclined to tinker
in computer science?” in Proceedings of the Technical Symposium on
Computer Science Education (SIGCSE), 2015, pp. 102-107.

M. M. Burnett, J. W. Atwood Jr, and Z. T. Welch, “Implementing level
4 liveness in declarative visual programming languages,” in Proceedings
of the Symposium on Visual Languages (VL/HCC), 1998, pp. 126-136.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]
(27]
[28]
[29]
[30]
(31]

[32]

[33]

[34]

for Qualitative Research, ser. Observations.

S. L. Tanimoto, “A perspective on the evolution of live programming,”
in Proceedings of the International Workshop on Live Programming
(LIVE), 2013, pp. 31-34.

Y. Dong, S. Marwan, V. Catete, T. Price, and T. Barnes, “Defining tin-
kering behavior in open-ended block-based programming assignments,”
in Proceedings of the Technical Symposium on Computer Science
Education (SIGCSE), 2019, pp. 1204-1210.

J. Kubelka, R. Robbes, and A. Bergel, “The road to live programming:
Insights from the practice,” in Proceedings of the International Confer-
ence on Software Engineering (ICSE), 2018, pp. 1090-1101.

Wool and the Gang. (2015) Our survey results are in!
[Online]. Available: https://www.woolandthegang.com/blog/2015/02/
our-survey-results-are-in

M. CX. (2017) 2016 creative products size of the industry
study. [Online]. Available: https://craftindustryalliance.org/wp-content/
uploads/2021/11/AFCI-Presentation_012317_FINAL.pdf

S. Martinez and G. Stager, Invent to Learn: Making, Tinkering, and
Engineering in the Classroom. Constructing Modern Knowledge Press,
2016.

B. Jones, Y. Mei, H. Zhao, T. Gotfrid, J. Mankoff, and A. Schulz, “Com-
putational design of knit templates,” ACM Transactions on Graphics
(TOG), vol. 41, no. 2, 2021.

Ravelry. (2023) Baby suprise jacket wiki page. [Online]. Available:
https://www.ravelry.com/%atterns/library/baby—surprise—jacket/wiki

M. Hofmann, L. Albaugh, T. Sethapakadi, J. Hodgins, S. E. Hudson,
J. McCann, and J. Mankoff, “Knitpicking textures: Programming and
modifying complex knitted textures for machine and hand knitting,”
in Proceedings of the Symposium on User Interface Software and
Technology (UIST), 2019, pp. 5-16.

J. Briar. (2023) Stitch maps. [Online]. Available: https:/stitch-maps.
com/

C. Battell, “Domain specific language for modular knitting pattern
definitions: Purl,” 2016.

C. Y. Council. (2023) Knitting abbreviations master list. [Online]. Avail-
able: https://www.craftyarncouncil.com/standards/knitting-abbreviations
Ravelry. (2023) About ravelry. [Online]. Available: https://www.ravelry.
com/about

J. Farmer. (2011) Heartwarming knit scarf. [Online]. Available:
https://www.ravelry.com/patterns/library/heartwarming-knit-scarf

B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strategies
Aldine Transaction, 1967.
M. K. Goel, P. Khanna, and J. Kishore, “Understanding survival analysis:
Kaplan-meier estimate,” International Journal of Ayurveda Research,
vol. 1, no. 4, p. 274, 2010.

B. Bevan, J. P. Gutwill, M. Petrich, and K. Wilkinson, “Learning through
stem-rich tinkering: Findings from a jointly negotiated research project
taken up in practice,” Science Education, vol. 99, pp. 98-120, 2015.

S. Baltes, G. Park, and A. Serebrenik, “Is 40 the new 60? how popular
media portrays the employability of older software developers,” IEEE
Software, vol. 37, no. 6, pp. 26-31, 2020.

