
CPSC 340 Assignment 5 (due Friday November 15 at 11:55pm)

If you are planning to do a poster project, make sure to register for the poster session as soon as possible.
Details regarding registration are here:
https://piazza.com/class/k02x04b6o524?cid=358

1 Kernel Trick

In this question you will revisit questions from previous assignments, this time implementing the same (or
similar) models using the “kernel trick”.

1.1 “Other” Normal Equations

The script example nonLinear loads a dataset from a previous assignment, and fits an L2-regularized least
squares model with a bias term (the regularization leads to small improvement in the test error, even for this
2-variable problem). Modify the leastSquaresBiasL2 function so that it uses the “other” normal equations
we discussed in class,

v = ZT (ZZT + λI)−1y︸ ︷︷ ︸
u

.

In particular, the training should result in an n× 1 vetor u of parameters, and predictions are made based
on the training Z and the vector u. Hand in your code for the modified function.

Hint: you should get the same predictions as the original funciton. To help debugging, you may want to
first re-write the calculation of v using the above formula, to verify that this gives you the same vector v.

1.2 Polynomial Kernel

Write a new function, leastSquaresKernelBasis, taking a degree p and a regularization parameter λ. It should
fit a degree-p polynomial to the data, using the kernel trick to avoid ever forming the matrix Z. Hand in
your code and the plot obtained with p = 3 and λ = 10−6.

Hint: you may find it helpful to write a function polyKernel that takes two matrices as inputs (either X
and X or X̃ and X) and a degree p, and computes the polynomial kernel between all pairs of rows in the
matrices.

1.3 Gaussian-RBF Kernel

Repeat the previous question and report the same quantities, but using the Gaussian RBF kernel. You can
use σ = 1 and λ = 10−6 for the plot.

2 MAP Estimation

In class, we considered MAP estimation in a regression model where we assumed that:

• The likelihood p(yi | xi, w) for each example i is a normal distribution with a mean of wTxi and a
variance of 1.

• The prior p(wj) for each variable j is a normal distribution with a mean of zero and a variance of λ−1.
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Under these assumptions we showed that computing the MAP estimate with n training examples leads to
the standard L2-regularized least squares objective function:

f(w) =
1

2
‖Xw − y‖2 +

λ

2
‖w‖2.

For each of the alternate assumptions below, write down the objective function that results (from minimizing
the negative log-posterior, and simplifying as much as possible):

1. We use a Laplace likelihood with a mean of wTxi and a scale of 1, and we use a zero-mean Laplace
prior for each variable with a scale parameter of λ−1,

p(yi | xi, w) =
1

2
exp(−|wTxi − yi|), p(wj) =

λ

2
exp(−λ|wj |).

2. We use a normal likelihood with a mean of wTxi but where each example i has its own positive variance
σ2
i , and a normal prior with a variance of λ−1 and a mean that is some “guess” w0 of the optimal

parameter vector,

p(yi | xi, w) =
1√

2σ2
i π

exp

(
− (wTxi − yi)2

2σ2
i

)
, p(wj) ∝ exp

(
−
λ(wj − w0

j )
2

2

)
.

The standard notation for this case is to use Σ as a diagonal matrix with the σ2
i values along the

diagonal.

3. We use a Poisson likelihood with a mean of exp(wTxi),
1 and we use a uniform prior for some constant

κ,

p(yi | xi, w) =
exp(yiw

Txi) exp(− exp(wTxi))

yi!
, p(wj) ∝ κ

For this sub-question you don’t need to put likelihood in matrix notation.

4. We use a Laplace likelihood with a mean of wTxi where each example i has its own positive scale
paramater v−1

i , and a student t prior (which is very robust to irrelevant features) with ν degrees of
freedom,

p(yi | xi, w) =
1

2
exp

(
−vi|wTxi − yi|

)
, p(wj) =

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
w2
j

ν

)− ν+1
2

where you use can V as a diagonal matrix with the vi along the diagonal and Γ is the “gamma” function
(which is always non-negative). You do not need to put the log-prior in matrix notation.

3 Principal Component Analysis

3.1 PCA by Hand

Consider the following dataset, containing 5 examples with 2 features each:

x1 x2
-4 3
0 1
-2 2
4 -1
2 0

1This is one way to use regression to model counts, like “number of Facebook likes”.
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Recall that with PCA we usually assume that the PCs are normalized (‖w‖ = 1), that we need to center the
data before we apply PCA, and that the direction of the first PC is the one that minimizes the orthogonal
distance to all data points.

1. What is the first principal component?

2. What is the (L2-norm) reconstruction error of the point (-3, 2.5)? (Show your work.)

3. What is the (L2-norm) reconstruction error of the point (-3, 2)? (Show your work.)

3.2 Data Visualization

The script example PCA will load a dataset containing 50 examples, each representing an animal. The
85 features are traits of these animals. The script standardizes these features and gives two unsatisfying
visualizations of it. First it shows a plot of the matrix entries, which has too much information and thus
gives little insight into the relationships between the animals. Next it shows a scatterplot based on two
random features and displays the name of 10 randomly-chosen animals. Because of the binary features even
a scatterplot matrix shows us almost nothing about the data.

The function PCA applies the classic PCA method (orthogonal bases via SVD) for a given k. Using this
function, modify the demo so that the scatterplot uses the latent features zi from the PCA model with k = 2.
Make a scatterplot of the two columns in Z, and use the annotate function to label a bunch of the points in
the scatterplot.

1. Hand in your modified demo and the scatterplot.

2. Which trait of the animals has the largest influence (absolute value) on the first principal component?
(Make sure not to forget the “+1” when looking for the name of the trait in the dataTable).

3. Which trait of the animals has the largest influence (absolute value) on the second principal component?

3.3 Data Compression

It is important to know how much of the information in our dataset is captured by the low-dimensional PCA
representation. In class we discussed the “analysis” view that PCA maximizes the variance that is explained
by the PCs, and the connection between the Frobenius norm and the variance of a centered data matrix X.
Use this connection to answer the following:

1. How much of the variance is explained by our two-dimensional representation from the previous ques-
tion?

2. How many PCs are required to explain 50% of the variance in the data?

Note: you can compute the Frobenius norm of a matrix using the function norm. Also, note that the
“variance explained” formula from class assumes that X is already centered.

4 Very-Short Answer Questions

1. What is the difference between multi-label and multi-class classification?

2. We discussed “global” vs. “local” features for e-mail classification. What is an advantage of using
global features, and what is advantage of using local features?

3. Assuming we want to use the original features (no change of basis) in a linear model, what is an
advantage of the “other” normal equations over the original normal equations?

4. What is the key advantage of stochastic gradient methods over gradient descent methods?
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5. Which of the following step-size sequences lead to convergence of stochastic gradient to a stationary
point?

(a) αt = 1/t2.

(b) αt = 1/t.

(c) αt = γ/t (for γ > 0).

(d) αt = 1/(t+ γ) (for γ > 0).

(e) αt = 1/
√
t.

(f) αt = 1.

6. In the language of loss functions and regularization, what is the difference between MLE and MAP?

7. What is the difference between a generative model and a discriminative model?

8. In the MLE framework, what is the connection between the logistic loss and the sigmoid function in
linear models.

9. What is the significance of choosing k = 2 for visualizing with PCA.

10. With PCA, is it possible for the loss to increase if k is increased? Briefly justify your answer.

11. Why doesn’t it make sense to do PCA with k > d?

12. In terms of the matrices associated with PCA (X, W , Z, X̂), where would an “eigenface” be stored?

Project Update (OPTIONAL for 340 STUDENTS)

Alongside Assignment 5, we are also asking you to submit a project update. It’s ok if you haven’t yet made
much progress on your project, but we’re making you submit this document as an excuse to get together with
your project and plan. In particular, the project update should be a 1-page report covering the following:

1. What has been done already: for example, you might have already found a group of appropriate
size, picked a topic, got access to appropriate data, read some related papers, or maybe even ran some
preliminary experiments.

2. What still needs to be: what are the “action items” that need to be finished in order to complete
the project. The purpose here is that you make a plan to finishing the different things that will need
to come together in order to finish your project.

It’s ok if the report is fairly short, and just written as series of bullet items addressing the two issues above.
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