CPSC 440: Advanced Machine Learning Deep Structured Models

Mark Schmidt

University of British Columbia

Winter 2021

Backpropagation as Message-Passing

- Computing the gradient in neural networks is called backpropagation.
 - Derived from the chain rule and memoization of repeated quantities.
- We're going to view backpropagation as a message-passing algorithm.
- Key advantages of this view:
 - It's easy to handle different graph structures.
 - It's easy to handle different non-linear transformations.
 - It's easy to handle multiple outputs (as in structured prediction).
 - It's easy to add non-deterministic parts and combine with other graphical models.

Backpropagation Forward Pass

• Consider computing the output of a neural network for an example *i*,

$$y^{i} = v^{T} h(W^{3} h(W^{2} h(W^{1} x^{i})))$$

= $\sum_{c=1}^{k} v_{c} h\left(\sum_{c'=1}^{k} W^{3}_{c'c} h\left(\sum_{c''=1}^{k} W^{2}_{c''c'} h\left(\sum_{j=1}^{d} W^{1}_{c''j} x^{i}_{j}\right)\right)\right)$

.

where we've assume that all hidden layers have k values.

- In the second line, the h functions are single-input single-output.
- The nested sum structure is similar to our message-passing structures.
- However, it's easier because it's deterministic: no random variables to sum over.
 - The messages will be scalars rather than functions.

Backpropagation Forward Pass

• Forward propagation through neural network as message passing:

$$y^{i} = \sum_{c=1}^{k} v_{c}h\left(\sum_{c'=1}^{k} W_{c'c}^{3}h\left(\sum_{c''=1}^{k} W_{c''c'}^{2}h\left(\sum_{j=1}^{d} W_{c''j}^{1}x_{j}^{i}\right)\right)\right)\right)$$
$$= \sum_{c=1}^{k} v_{c}h\left(\sum_{c'=1}^{k} W_{c'c}^{3}h\left(\sum_{c''=1}^{k} W_{c''c'}^{2}h(M_{c''})\right)\right)$$
$$= \sum_{c=1}^{k} v_{c}h\left(\sum_{c'=1}^{k} W_{c'c}^{3}h(M_{c'})\right)$$
$$= \sum_{c=1}^{k} v_{c}h(M_{c})$$
$$= M_{y},$$

where intermediate messages are the z values.

Backpropagation Backward Pass

• The backpropagation backward pass computes the partial derivatives.

 $\bullet\,$ For a loss f, the partial derivatives in the last layer have the form

$$\frac{\partial f}{\partial v_c} = z_c^{i3} f'(v^T h(W^3 h(W^2 h(W^1 x^i))))),$$

where

$$z_{c'}^{i3} = h\left(\sum_{c'=1}^{k} W_{c'c}^{3}h\left(\sum_{c''=1}^{k} W_{c''c'}^{2}h\left(\sum_{j=1}^{d} W_{c''j}^{1}x_{j}^{i}\right)\right)\right)$$

.

• Written in terms of messages it simplifies to

$$\frac{\partial f}{\partial v_c} = h(M_c) f'(M_y).$$

Backpropagation Backward Pass

• In terms of forward messages, the partial derivatives have the forms:

$$\begin{aligned} \frac{\partial f}{\partial v_c} &= h(M_c) f'(M_y), \\ \frac{\partial f}{\partial W_{c'c}^3} &= h(M_{c'}) h'(M_c) w_c f'(M_y), \\ \frac{\partial f}{\partial W_{c''c'}^2} &= h(M_{c''}) h'(M_{c'}) \sum_{c=1}^k W_{c'c}^3 h'(M_c) w_c f'(M_y), \\ \frac{\partial f}{\partial W_{jc''}^1} &= h(M_j) h'(M_{c''}) \sum_{c'=1}^k W_{c''c'}^2 h'(M_{c'}) \sum_{c=1}^k W_{c'c}^3 h'(M_c) w_c f'(M_y), \end{aligned}$$

which are ugly but notice all the repeated calculations.

Backpropagation Backward Pass

• It's again simpler using appropriate messages

 $\overline{\partial}$

 $\overline{\partial}$

$$\frac{\partial f}{\partial v_c} = h(M_c) f'(M_y),$$
$$\frac{\partial f}{\partial W_{c'c}^3} = h(M_{c'}) h'(M_c) w_c V_y,$$
$$\frac{\partial f}{W_{c''c'}^2} = h(M_{c''}) h'(M_{c'}) \sum_{c=1}^k W_{c'c}^3 V_c,$$
$$\frac{\partial f}{W_{jc''}^1} = h(M_j) h'(M_{c''}) \sum_{c'=1}^k W_{c''c'}^2 V_{c'},$$

where $M_j = x_j$.

Backpropagation as Message-Passing

 $\bullet\,$ The general forward message for child c with parents p and weights W is

$$M_c = \sum_p W_{cp} h(M_p),$$

which computes weighted combination of non-linearly transformed parents.

• In the first layer we don't apply h to x.

• The general backward message from child c to all its parents is

$$V_c = h'(M_c) \sum_{c'} W_{cc'} V_{c'},$$

which weights the "grandchildren's gradients".

- In the last layer we use f instead of h.
- The gradient of W_{cp} is $h(M_c)V_p$, which works for general graphs.

Automatic Differentiation

- Automatic differentiation:
 - Input is code that computes a function value.
 - Output is code computing is one or more derivatives of the function.
- Forward-mode automatic differentiation:
 - Computes a directional derivative for cost of evaluating function.
 - So computing gradient would be *d*-times more expensive than function.
 - Low memory requirements.
 - Most useful for evaluating Hessian-vector products, $\nabla^2 f(w)d$.
- Reverse-mode automatic differentiation:
 - Computes gradient for cost of evaluating function.
 - But high memory requirements: need to store intermediate calculations.
 - Backpropagation is (essentially) a special case.
- Reverse-mode is replacing "gradient by hand" (less time-consuming/bug-prone).

Combining Neural Networks and CRFs

• Previously we saw conditional random fields like

$$p(y \mid x) \propto \exp\left(\sum_{c=1}^{k} y_c v^T x_c + \sum_{(c,c') \in E} y_c y_{c'} w\right),$$

which can use logistic regression at each location c and lsing dependence on y_c .

• Instead of logistic regression, you could put a neural network in there:

$$p(y \mid x) \propto \exp\left(\sum_{c=1}^{k} y_c v^T h(W^3 h(W^2(W^1 x_c))) + \sum_{(c,c') \in E} y_c y_{c'} w\right).$$

- Sometimes called a conditional neural field or deep structured model.
- Backprop generalizes:
 - **(**) Forward pass through neural network to get \hat{y}_c predictions.
 - **2** Belief propagation to get marginals of y_c (or Gibbs sampling if high treewidth).
 - Backwards pass through neural network to get all gradients.

Neural Networks and Message Passing

Multi-Label Classification

• Consider multi-label classification:

http://proceedings.mlr.press/v37/chenb15.pdf

- Flickr dataset: each image can have multiple labels (out of 38 possibilities).
- Use neural networks to generate "factors" in an undirected model.
 - Decoding undirected model makes predictions accounting for label correlations.

Multi-Label Classification

• Learned correlation matrix:

female	0.00	0.68	0.04	0.06	0.02	0.24	0.03	-0.00	-0.01	0.01	0.04	-0.00	-0.05	-0.01	0.07	-0.01	-0.00	-0.12	0.04	0.01	0.01	0.02	0.04	0.02
people	0.68	0.00	0.06	0.06	-0.00	0.36	0.03	-0.08	-0.05	-0.03	0.02	-0.06	-0.12	-0.05	0.74	-0.04	-0.03	-0.21	0.01	-0.03	-0.03	-0.03	0.05	-0.03
indoor	0.04	0.06	0.00	0.05	-0.06	0.07	-0.12	-0.07	-0.35	-0.03	-0.46	-0.02	-0.34	0.11	0.02	-0.15	-0.14	-0.01	-0.07	-0.21	0.03	-0.08	0.06	-0.03
baby	0.06	0.06	0.05	0.00	0.10	0.11	0.07	0.09	0.03	0.10	0.01	0.10	0.02	0.09	0.06	0.08	0.07	0.07	0.08	0.06	0.09	0.09	0.08	0.10
sea	0.02	-0.00	0-0.06	0.10	0.00	0.04	0.08	0.05			-0.02	0.09	-0.02	0.06	0.03		0.36	0.06	0.05	0.01	0.08	0.14	0.06	0.10
portrait	0.24	0.36	0.07	0.11	0.04	0.00	0.01	0.03	-0.02	0.05	-0.02	0.04	-0.01	0.03	0.12	0.02	0.01	-0.07	0.05	0.05	0.03	0.04	0.07	0.05
transport	0.03	0.03	-0.12	0.07	0.08	0.01	0.00	0.02	0.14	0.07		0.04	0.05	0.03	0.06	0.08	0.07	-0.03	0.36	0.10	0.04	0.05	0.04	0.07
flower	-0.0	0 -0.08	3 -0.07	0.09	0.05	0.03	0.02	0.00	0.02	0.07	-0.03	0.07	0.34	0.04	-0.04	0.04	0.04	0.02	0.05	0.06	0.06	0.06	0.02	0.07
sky	-0.03	1 -0.08	-0.35	0.03		-0.02	0.14	0.02	0.00	0.12		0.04	0.24	-0.02	-0.00	0.44	0.12	-0.04	0.10	0.30	0.01	0.23	0.05	0.11
lake	0.01	-0.03	3 -0.03	0.10		0.05	0.07	0.07	0.12	0.00	-0.00	0.09	0.09	0.07	0.01	0.12	0.26	0.06	0.06	0.10	0.07	0.12	0.07	0.18
structures	0.04	0.02	-0.46	0.01	-0.02	-0.02		-0.03		-0.00	0.00	0.01	0.04	-0.05	0.06	0.08	-0.04	-0.06		0.09	-0.00	0.06	0.03	0.02
bird	-0.0	0 -0.06	5 -0.02	0.10	0.09	0.04	0.04	0.07	0.04	0.09	0.01	0.00	0.04	0.07	-0.01	0.06	0.09	0.26	0.06	0.05	0.07	0.09	0.05	0.09
plant life	-0.0	5 -0.12	2 -0.34	0.02	-0.02	-0.01	0.05	0.34	0.24	0.09	0.04	0.04	0.00	-0.03	-0.07	0.09	0.01	0.01	0.08	0.68	0.02	0.05	-0.07	0.10
food	-0.0	1 -0.08	5 0.11	0.09	0.06	0.03	0.03	0.04	-0.02	0.07	-0.05	0.07	-0.03	0.00	-0.01	0.03	0.03	0.03	0.05	0.01	0.06	0.06	0.04	0.07
male	0.07	0.74	0.02	0.06	0.03	0.12	0.06	-0.04	-0.00	0.01	0.06	-0.01	-0.07	-0.01	0.00	0.00	-0.01	-0.10	0.04	-0.02	0.01	0.00	0.06	0.01
clouds	-0.03	1 -0.04	-0.15	0.08		0.02	0.08	0.04	0.44	0.12	0.08	0.06	0.09	0.03	0.00	0.00	0.09	-0.00	0.07	0.11	0.05	0.22	-0.01	0.10
water	-0.0	0 -0.03	8 -0.14	0.07	0.36	0.01	0.07	0.04	0.12	0.26	-0.04	0.09	0.01	0.03	-0.01	0.09	0.00	0.05	0.02	0.03	0.05	0.10	0.03	0.27
animals	-0.1	2 -0.21	-0.01	0.07	0.06	-0.07	-0.03	0.02	-0.04	0.06	-0.06	0.26	0.01	0.03	-0.10	-0.00	0.05	0.00	0.02	0.00	0.22	0.03	-0.01	0.05
car	0.04	0.01	-0.07	0.08	0.05	0.05	0.36	0.05	0.10	0.06		0.06	0.08	0.05	0.04	0.07	0.02	0.02	0.00	0.11	0.06	0.08	0.07	0.06
tree	0.01	-0.03	8 -0.21	0.06	0.01	0.05	0.10	0.06	0.30	0.10	0.09	0.05	0.68	0.01	-0.02	0.11	0.03	0.00	0.11	0.00	0.04	0.09	-0.00	0.12
dog	0.01	-0.03	3 0.03	0.09	0.08	0.03	0.04	0.06	0.01	0.07	-0.00	0.07	0.02	0.06	0.01	0.05	0.05	0.22	0.06	0.04	0.00	0.06	0.05	0.07
sunset	0.02	-0.03	8 -0.08	0.09	0.14	0.04	0.05	0.06		0.12	0.06	0.09	0.05	0.06	0.00		0.10	0.03	0.08	0.09	0.06	0.00	0.06	0.10
night	0.04	0.05	0.06	0.08	0.06	0.07	0.04	0.02	0.05	0.07	0.03	0.05	-0.07	0.04	0.06	-0.01	0.03	-0.01	0.07	-0.00	0.05	0.06	0.00	0.07
river	0.02	-0.03	3 -0.03	0.10	0.10	0.05	0.07	0.07	0.11	0.18	0.02	0.09	0.10	0.07	0.01	0.10	0.27	0.05	0.06	0.12	0.07	0.10	0.07	0.00
	5°	¢.	Ч°р.	0	00	<i>ф</i> о.	52	\$	Sr.	~,	°~.	0.	\$	03	na.	\$	20	<i>с</i> е	00.	Ş2	80	SS.	2.	Ś.
	1	\$ ~ ~ P	b, °C	5 3	6 9	1	5 ° 2	2 9	10 12	.46	<u>کر</u> ر	p ²	v `94	$\sim ^{\circ}$	y 'Ye	ું જ	, 'C	s Ya	2. 5	.6	, 3	.s ^c	194	× 6
		0	0	4			97.	.00,	4			· 62		2.			\mathcal{O}^{*}	,	No.				.0	```
							.C	~~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ò									
															-									

http://proceedings.mlr.press/v37/chenb15.pdf

Automatic Differentiation (AD) vs. Inference

- If you use exact inference methods, automatic differentiation will give gradient.
 - You write message-passing code to compute Z.
 - AD modifies your code to compute expectations in gradient.
- With approximate inference, AD may or may not work:
 - AD will work for iterative variational inference methods (which we'll cover later).
 - AD will not tend to work for Monte Carlo methods.
 - Can't AD through sampling (but there exist tricks like "common random numbers").
- Recent trend: run iterative variational method for a fixed number of iterations.
 - AD can give gradient of result after this fixed number of iterations.
 - "Train the inference you will use at test time".

Deep Learning for Structured Prediction (Big Picture)

- How is deep learning being used for structured prediction applications?
 - Discriminative approaches are most popular.
- Typically you will send x through a neural network to get representation z, then:
 - **O** Perform inference on $p(y \mid z)$ (backpropagate using exact/approximate marginals).
 - Neural network learns features, CRF "on top" models dependencies in y_c .
 - **2** Run m approximate inference steps on $p(y \mid z)$, backpropagate through these steps.
 - "Learn to use the inference you will be using" (usually with variational inference).
 - **3** Just model each $p(y_c \mid z)$ (treat labels as independent given representation).
 - Assume that structure is already captured in neural network goo (no inference).
- Current trend: less dependence on inference and more on learning representation.
 - "Just use an RNN rather than thinking about stochastic grammars."
 - We're improving a lot at learning features, less so for inference.
 - This trend may or may not reverse in the future...

Neural Networks with Latent-Dynamics

- Instead of modeling y dependencies, could random z values.
 - Like an HMM with neural networks defining the hidden dynamics.

• Combines deep learning, mixture models, and graphical models.

- "Latent-dynamics model".
- Previously achieved among state of the art in several applications.

Summary

- Implicit regularization:
 - Some optimization methods may converge to regularized solutions.
- Double descent curves:
 - Weird phenomenon from increasing regularization as you increase complexity.
- Backpropagation can be viewed as a message passing algorithm.
- Combining CRFs with deep learning.
 - You can learn the features and the label dependency at the same time.
- Reducing the reliance on inference is a current trend in the field.
 - Rely on neural network to learn clusters and dependencies.
- Next time: "end-to-end" learning.