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Convolutional Neural Networks

@ In 340 we discussed convolutional neural networks (CNNs):
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http://blog.csdn.net/strint/article/details/44163869

o Convolutional layers where W acts like a convolution (sparse with tied parameters).
e Pooling layers that usually take maximum among a small spatial neighbourhood.
e Fully-connected layers that use an unrestricted W.


http://blog.csdn.net/strint/article/details/44163869
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Motivation: Beyond Classification

@ Convolutional structure simplifies the learning task:
e Parameter tieing means we have more data to estimate each parameter.
e Sparsity drastically reduces number of parameters.
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https://www.cs.toronto.edu/~frossard/post/vggl6

@ We discussed CNNs for image classification: “is this an image of a cat?".
e But manv vision tasks are not image classification tasks.


https://www.cs.toronto.edu/~frossard/post/vgg16
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Object Localization

@ Object localization is task of finding locations of objects:
o Need to find where in the image the object is.
e May need to recognize more than one object.

persan. e

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4


https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
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Region Convolutional Neural Networks: “Pipeline” Approach

e Early approach (region CNN):
@ Propose a bunch of potential boxes.
@ Compute features of box using a CNN.
© C(lassify each box based on an SVM.
@ Refine each box using linear regression.
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https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

@ Improved on state of the art, but not very elegant with its 4 steps.


https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
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Region Convolutional Neural Networks: “End to End” Approach

@ Modern approaches try to do the whole task with one neural network.
e The network extracts features, proposes boxes, and classifies boxes.
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https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

@ This is called an end-to-end model.


https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
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End-to-End Computer Vision Models

@ Key ideas behind end-to-end systems:

@ Write each step as a differentiable operator.
@ Train all steps using backpropagation and stochastic gradient.

@ Has been called differentiable programming.

@ There now exist end-to-end models for all the standard vision tasks.

e Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
e A bit hard to track the progress at the moment.
e A survey of ~ 200 papers from 2016:

@ http://www.themtank.org/a-year-in-computer-vision

o We'll focus on the task of pixel labeling...


http://www.themtank.org/a-year-in-computer-vision
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Straightforward CNN Extensions to Pixel Labeling

@ Approach 1: apply an existing CNN to classify pixel given neighbourhood.

e Misses long range dependencies in the image.
e It's slow: for 200 by 200 image, need to do forward propagation 40000 times.

@ Approach 2: add per-pixel labels to final layer of an existing CNN.

e Fully-connected layers lose spatial information.
o Relies on having fixed-size images.
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Fully-Convolutional Neural Networks

@ Classic CNN architecture:

convolution fully connected
o N L
227 x 227 55 x 55 27 x27 13x13

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html


https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
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Fully-Convolutional Neural Networks

e Fully-convolutional neural networks (FCNs): CNNs with no fully-connected layers.
o All layers maintain spatial information.
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https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

@ Final layer upsamples to original image size.
e With a learned “transposed convolution”.

@ Parameter tieing within convolutions allows images of different sizes.


https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html
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Transposed Convolution Layer

@ The upsampling layer is also called a transposed convolution or “deconvolution”.
o Implemented as another convolution.

Convolution: Transposed:

https://github.com/vdumoulin/conv_arithmetic

@ Reasons for the names:
e “Tranposed” because sparsity pattern is transpose of a downsampling convolution.
e “Deconvolution” is not related to the “deconvolution” in signal processing.


https://github.com/vdumoulin/conv_arithmetic

End-to-End Learning Fully-Convolutional Networks

Fully-Convolutional Neural Networks

@ FCNs quickly achieved state of the art results on many tasks.
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e 6. Fully convolutional segmentation nets produ
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

@ FCN end-to-end solution is very elegant compared to previous “pipelines”:
o No super-pixels, object proposals, merging results from multiple classifiers, and so on.


https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
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Variations on FCNs

@ The transposed convolution at the last layer can lose a lot of resolution.

@ One option is adding “skip” connections from earlier higher-resolution layers.
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Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-325): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-165): Combining
predictions from both the final layer and the pool 4 layer, at stride 16, lets our net predict finer details, while retaini -level semantic
information. Third row (FCN-8s): Additional predictions from pool 3, at stride 8, provide further pree

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf


https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
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Variations on FCNs

@ Another approach to preserving resolution is deconvolutional networks:
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https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html


https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

End-to-End Learning Fully-Convolutional Networks

Combining FCNs and CRFs

@ Another way to address this is combining FCNs and CRFs.
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Fig. 1: Model Illustration. A Deep Convolutional Neural Network such as VGG-16 or ResNet-101 is employed in a fully
convolutional fashion, using atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A
bilinear interpolation stage enlarges the feature maps to the original image resolution. A fully connected CRF is then
applied to refine the segmentation result and better capture the object boundaries.

https://arxiv.org/pdf/1606.00915.pdf
@ Deeplab uses a fully-connected pairiwse CRF on output layer.
e Though most recent version removed CRF.


https://arxiv.org/pdf/1606.00915.pdf
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Image Colourization

@ An end-to-end image colorization network:
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Luminance
(Input image)

Predicted labels

http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en

colour of existing images after removing colour.


http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en
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Image Colourization

@ Image colorization results:

Colorado National Park, 1941 Textile Mill, June 1937 Berry Field, June 1909 Hamilton, 1936
http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en
o Gallery:
http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html

@ Video: https://www.youtube.com/watch?v=ys5nM04Q0iY


http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en
http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY
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R-CNNs for Pixel Labeling

@ An alternative approach: learn

N

to apply binary mask to R-CNN results:

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4


https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
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Where does data come from?
@ Unfortunately, getting densely-labeled data is often hard.

@ For pixel labeling and depth estimation, we explored getting data from GTA V:

@ Easy to collect data at night, in fog, or in dangerous situations.
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Where does data come from?

@ Recent works use that you don't need full labeling.
e Unobserved children in DAG don't induce dependencies.
o Although you would do better if you have an accurate dense labeling.

@ Test object segmentation based on “single pixel” labels from training data:
e And some tricks to separate objects and remove false positives.

@ Show video...
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Summary

@ End to end models: use a neural network to do all steps.

e Write each step in a vision “pipeline” as a differentiable operator.
e Train entire network using SGD.

@ Fully-convolutional networks:

o Network where every layer maintains spatial information.
o Elegant way to apply convolutional networks for dense labeling problems.
o Allows training/prediction on images of different sizes.

@ Next time: generating poetry, music, and dance moves.
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