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Stochastic Sub-Gradient Convergence Rate

Last Time: Coordinate Optimization
@ In coordinate optimization we only update one variable on each iteration.

witt = wh — ap Vi f(wh),

@ More efficient than gradient descent if the iterations are d-times cheaper.
e True for pairwise separable f like label propagation,

d
’LU) = Zfl(w] Z fz] wzaw]
=1

(i,J)€E

under random choice of j;.



Stochastic Sub-Gradient Convergence Rate

Convergence Rate of Randomized Coordinate Optimization

@ Last time we analyzed coordinate optimization assuming:
o Coordinate-wise Lipschitz-continuity of V f and f satisfying PL inequality.
e We choose coordinate to update j; uniformly at random.
o Given ji, we take a gradient step on w;, with step-size a, = 1/L.

@ We showed that this leads to the bound
k
k\1 _ * < _ﬁ ky _ px*
Elf () = 1 < (1= 22) 1" = 1,

which means we need O (d% log(l/e)> iterations to reach accuracy e.

@ If d-times cheaper, gives cost of O (% log(l/e)) gradient descent iterations.

e But L is smaller for coordinate descent, so total runtime is smaller.

e For convex/non-convex functions, similar trade-off: O(L/¢) vs. O(dL/e).



Lipschitz Sampling

@ Can we do better than choosing ji uniformly at random?

@ You can go faster if you have an L, for each coordinate:
IVif (w+e;) = Vif(w)| < Lyl

@ Using L;, as the step-size and sampling j; proportional to L, gives

E[f(w*) - £ < (1= £) 11" - 1),

where L as the average Lipschitz constant (previously we used the maximum L;).

@ For label propagation, this requires stronger assumptions on the graph structure:

o We need expected number of edges connected to ji to be O(|E|/d).
o This might not be true if the high-degree nodes have the highest L; values.



Greedy Gauss-Southwell Selection Rule

@ Our bound on the progress if we choose coordinate jj is

1
Fh) < Fh) — o2 1V fb)
and the “best” j; according to the bound is
i, € argmax{|V; f(w®)]},
J

o This is called greedy selection or the Gauss-Southwell rule.

'\ Gauss-Southwell




Greedy Gauss-Southwell Selection Rule
@ Our bound on the progress if we choose coordinate jj is
Fr) < Fb) — oIV, F@h)
and the “best” j; according to the bound is
gk € arg?ﬁaX{!ij(wk)l},
@ This is called greedy selection or the Gauss-Southwell rule.

@ Can we ever find max gradient value d-times cheaper than computing gradient?
o Yes, for pairwise-separable where maximum degree is similar to average degree.
@ Includes lattice-structured graphs, complete graphs, and Facebook graph.
e You can efficiently track the gradient values and track the max with a max-heap.



Gauss-Southwell Selection Rule

@ The progress bound under the greedy Gauss-Southwell rule is

Pt < fwh) — IV AR,
and this leads to a faster rate of
Fh) - £ < (1= Y [rd) - 71,
where 117 is the PL constant in the co-norm
ulf(w) — £ < Sl F@)
@ This is faster because % < w1 < p (by norm equivalences).

o If you know the L; values, a faster rule is “Gauss-Southwell-Lipschitz” .



Numerical Comparison of Coordinate Selection Rules
Comparison on problem where Gauss-Southwell has similar cost to random:

U5 -regularized sparse least squares
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“Cyclic” goes through the j in order: bad worst-case bounds but often works well
There also exist accelerated coordinate descent methods.



Problems Suitable for Coordinate Optimization

We now know that many problems satisfy the “d-times faster” condition.

For example, composition of a smooth function with affine map plus separable

d
F(w) = f(Aw) + ) f;(wy)

j=1

for a matrix A, smooth function f, and potentially non-smooth f;.
o Includes L1-regularized least squares, logistic regression, etc.

Key idea: you can track Aw as you go for a cost O(n) instead of O(nd) (bonus).

In this setting, we get same rate as if non-smooth f; were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)

Recent works: coordinate optimization leads to faster PageRank methods.
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Stochastic Sub-Gradient Convergence Rate
Finite-Sum Optimization Problems
@ Solving our standard regularized optimization problem

argminZﬁ(w) +  r(w),

weR? i=1

data fitting term 4 regularizer
is a special case of solving the generic finite-sum optimization problem

1 n
argmin — Z fi(w),
i=1

wERd n i
where fi(w) = fi(w) + tr(w).
o Gradient methods are effective when d is very large.

@ What if number of training examples n is very large?
o E.g., ImageNet has =~ 14 million annotated images.



Stochastic Sub-Gradient Convergence Rate
Stochastic vs. Deterministic Gradient Methods

o We consider minimizing f(w) = 1 3" | fi(w).

n

@ Deterministic gradient method [Cauchy, 1847]:
whtl = Wk — aka(wk) S L —. Z Vfi(wk).

e lteration cost is linear in n.
o Convergence with constant «y, or line-search.



Stochastic Sub-Gradient Convergence Rate

Stochastic vs. Deterministic Gradient Methods

@ Stochastic gradient method [Robbins & Monro, 1951]:
o Random selection of 45 from {1,2,...,n}.

whtt = wh — Vi (w").

o With p(ix = i), the stochastic gradient is an unbiased estimate of gradient,

E[Vf,, (w szk—szz Z Vfilw) = -3 Viilw) = Vf(w),
=1

e lteration cost is mdependent of n.
e Convergence requires ay, — 0.



Stochastic Sub-Gradient Convergence Rate

Stochastic vs. Deterministic Gradient Methods
Stochastic iterations are n times faster, but how many iterations are needed?

e If Vf is Lipschitz continuous then we have:
Assumption ‘ Deterministic ‘ Stochastic

Convex O(1/+/¢) O(1/€?)
Strongly O(log(1/¢)) O(1/e)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable with “unbiased gradient approximation” oracle.

o Oracle returns a g, satisfying E[gx] = V f(w").

@ Momentum and Newton-like methods do not improve rates in stochastic case.
e Can only improve constant factors.



Stochastic Sub-Gradient Convergence Rate

Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

=

stochastic

deterministic

log(excess cos

time

Stochastic will be superior for low-accuracy/time situations.



Stochastic Sub-Gradient Convergence Rate

Stochastic vs. Deterministic for Non-Smooth

@ The story changes for non-smooth problems.

e Consider the binary support vector machine (SVM) objective:

n
A
flw) = z;max{O, 1—ys(whz)} + §Hw||2
1=
@ Rates for subgradient methods for non-smooth objectives:

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/€?) O(1/€%)
Strongly O(1/e) O(1/e)

@ So for non-smooth problems:

o Deterministic methods are not faster than stochastic method.
e So use stochastic subgradient (iterations are n times faster).



Stochastic Sub-Gradient Convergence Rate

Subgradient Method

The basic subgradient method:

k+1 k
= w — Gk,

for some gy € Of (wh).

@ Decreases distance to solution for small enough ay.

The basic stochastic subgradient method:

k+1 k

w =W — QkGiy,

for some g;, € df;, (w*) for some random iy, € {1,2,...,n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough ay.
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Stochastic Sub-Gradient Convergence Rate

Convergence Rate of Stochastic Gradient Method

o We'll first show progress bound for stochastic gradient assuming V f is Lipschitz.
e We'll come back to the non-smooth case.

@ From the descent lemma we have

Pt < () + VF@h) b k) 2 ok kP

k+1 _

e Using stochastic gradient iteration (w wh) = —ap V f, (w") gives

Pt < () — 0V F@h) V1 (0b) + 0 51V 1 ()2



Stochastic Sub-Gradient Convergence Rate

Convergence Rate of Stochastic Gradient Method

@ So far any choice of a; and i we have
L
F@™) < fw®) = apV (") TV fiy (w") + 0f SV fiy (w®) 2.
@ Let's take the expectation with respect to ix assuming p(ip = i) = 1/n,
L
E[f(w* )] < E[f(w") — axV [ (") fiy (") + aignvm ()]

= f (") = V() TEV fi, (w >}+ak2 [V Fir ("),

where the second line uses linearity of expectation (and ay, not depending on iy).
o We know that E[V f;, (w")] = Vf(w") (unbiased) so this gives

E[f ()] < f(0¥) — o[ V£ (@b + o LB 9 i, ()]

good

bad



Stochastic Sub-Gradient Convergence Rate

Convergence Rate of Stochastic Gradient Method

So a progress bound for stochastic gradient is

E[f (0] < f(w") — ap|[Vf(w")]* + aigE[HVﬁk ol
—_—

good

bad

@ "Good" term looks like usual measure of progress: big gradient — big progress.
@ "Bad” term is the problem: less progress if gradients are very different.

e And now choosing o = 1/L might not be small enough.

o But we can control badness: if ay, is small then ay, >> a3.

o If we also assume PL then we get

B[/ ()]~ 7 < (1~ 2000)[F(0h) — 7] + 3 S B[V £, (w)]]

bad

@ Looks like linear convergence if far from solution and gradients are similar..
e No progress if close to solution or have high variance in gradients.



Stochastic Sub-Gradient Convergence Rate

Convergence Rate of Stochastic Subgradient Method

@ The basic stochastic subgradient method:
1
wh = wk — gy,
for some g;, € Of;, (w¥) for some random i;, € {1,2,...,n}.
@ We can't use descent lemma because f is non-differentiable.
@ For convex f we can show a progress bound on distance to a w* (bonus)
E+1 2 k 2 T k 2 2
E[lJw™™ —w*|*] = |w" — w*||* 20 gi (0" — w*) +a E[l|gs, |17],
~ ~——
old distance good bad
where g, is a subgradient of f at w* (good term is positive by convexity).
@ Step-size «y, controls how fast we move towards solution.
@ And squared step-size oc% controls how much variance moves us away.



Stochastic Sub-Gradient Convergence Rate

Convergence Rate of Stochastic Subgradient

o Standard assumption is that the E[||V f(w)||?] is bounded by constant B2.

E[lw**! —w*|?] < Jw* —w*||? =20y, gl (w* —w*) +af B2,
S——— ——
old distance good bad
e If f is strongly-convex, then we further have that (bonus)
Efllw® —w*|’] < (1 = 2app) |0~ — w*|* + o} B2

@ If oy, is small enough, shows distance to solution is guaranteed to decrease.

e With constant oy, = a (with o < 2/p) and applying recursively we get (bonus)

aB?

Effw® —w*?] < (1 = 20p)"|w® — w*|* + 2

where second term bounds a geometric series.



Stochastic Sub-Gradient Convergence Rate

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance with constant step-size:

k )2 Ey,,,0 c2, aB?
EffJw® —w*[|7] < (1 = 2ap)"||w” — w*|" + 2
@ First term looks like linear convergence, but second term does not go to zero.
o’

v
(selts A




Stochastic Sub-Gradient

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance with constant step-size:

Effw® —w*|*] < (1 = 20p)" [0’ — w*|* + =~

Convergence Rate

@ First term looks like linear convergence, but second term does not go to zero.

0
Y




Stochastic Sub-Gradient

Stochastic Gradient with Constant Step Size

@ Our bound on expected distance with constant step-size:

Convergence Rate

k )2 Ey,,,0 c2, aB?
Bl — % < (1= 20 — |+ -
@ First term looks like linear convergence, but second term does not go to zero.
W
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Stochastic Sub-Gradient Convergence Rate

Stochastic Gradient with Constant Step Size
@ Our bound on expected distance with constant step-size:
aB?
o
@ First term looks like linear convergence, but second term does not go to zero.

Effw® —w*?] < (1 - 20p)"[w® —w*|* +

0
%




Convergence Rate

Summary

Better coordinate selection with Lipschitz sampling or Gauss-Southwell.
f(Az) + 3, fj(w;) structure also allows coordinate optimization.
o Even for non-smooth f;.

Stochastic subgadient method: same rate as subgradient but n times cheaper.
o Constant step-size: subgradient quickly converges to approximate solution.

Next time: new stochastic methods with linear convergence, and the n = oo case.



Convergence Rate

Gauss-Southwell-Lipschitz

@ Our bound on the progress with an L; for each coordinate is

F) < ) = 5195 fb)

@ The best coordinate to update according to thls bound is

\v k\|2
Jr € argmax 7| Jf(w )
j Lj

which is called the Gauss-Southwell-Lipschitz rule.
o "If gradients are similar, pick the one that changes more slowly”.

Gauss-Southwell

@ This is the optimal update for quadratic functions.



(]

Convergence Rate

Problems Suitable for Coordinate Optimization

We now know that many problems satisfy the “d-times faster” condition.

For example, consider composition of a smooth function with affine map,
F(w) = f(Aw),

for a matrix A and a smooth function g with cost of O(n).
(includes least squares and logistic regression)

Using f’ as the gradient of f, the partial derivatives have the form
ViF(z) = a] f'(Aw).
If we have Aw, this costs O(n) instead of O(nd) for the full gradient.

We can track the product Aw" as we go with O(n) cost,

k+1 k k
A" = A(w" + yej, ) = Aw® +yy Aej,,
old value O(n)



Convergence Rate

Coordinate Optimization for Non-Smooth Objectives

@ We can apply coordinate optimization for problems of the form

~—~—~

SMOO

d
F(z) = f(z) + > fi=s),
th  J=L

N——

separable

where the f; can be non-smooth.
e This includes enforcing non-negative constraints, or using L1-regularization.

@ For proximal-PL F', with coordinate-wise proximal-gradient steps we have
TR
Blf(w®)] - f* < (1 22 () - £,

the same convergence linear rate as if the non-smooth f; were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)



Convergence Rate

Block Coordinate Descent

@ We can't apply coordinate optimization for group L1-regularization.
e Non-smooth term is non-separable, so coordinate optimization can get stuck.

@ Block coordinate optimization and block coordinate descent:
o Update groups of variables on each iteration.

@ If you choose the “blocks” to be the “groups”, you can apply to group
L1-regularization.

@ Many problems have this “block” structure.

e You might also use blocks to apply Newton's method to the blocks.
e This is efficient if the block size isn't too big.



Convergence Rate

Convergence Rate of Stochastic Subgradient Method

@ The basic stochastic subgradient method:

t+1 _ ¢
T =T — gy,

for some g;, € df;,(z") for some random i; € {1,2,...,n}.
@ Since function value may not decrease, we analyze distance to x*:
l2* = 2*|* = |(=*" = augi,) — =*||?
= [l = 2) = g |
= [l = 2*(? — 2aug, (21 — 2*) + o || ga I
@ Take expectation with respect to #;:
Eflz* — 2*|*] = E[lla*~" — 2*||] - 204Elgy; (¢* " — 2")] + o7E[l| g5, ||)
= |la*! = 2*|® —2ap g/ (2" — ") +aF E[llgi,|I%] -
N———— N————— N——

old distance expected progress “variance”



Convergence Rate of Stochastic Subgradient

Our expected distance given x'~! is

[z’ — 2*|”] = & — 2*|® —204 g7 (' — 2*) +0} E[llgi.||%]
2 S——

Ve
old distance expected progress “variance”

Step-size a; controls how fast we move towards solution.

But squared step-size a? controls how much variance moves us away.

Standard assumption is that the variance is bounded by constant B2
It follows from strong-convexity that (next slide),

g¢ (@t —a*) > pllatTt — 2|,
which gives
Ellz" — 2*[I”] < [l2"" — 2*|1* - 204pll2" — 2*||* + o} B2

= (1 — 204p) ||zt — 2*|? + o2 B2

Convergence Rate



Convergence Rate

Strong-Convexity Inequalities for Non-Differentiable f

o A “first-order” relationship between subgradient and strong-convexity:
o If fis u-strongly convex then for all  and y we have

f@) 2 f@) + F @y —2)+ Sy — |,

for f'(y) € Of (x).
The first-order definition of strong-convexity, but with subgradient replacing gradient.
e Reversing y and = we can write

@) 2 1)+ '@ @ =) + Sl =yl

for f'(x) € Of (x).
e Adding the above together gives
(f'(v) = f'(@)T(y — ) > ully — =|*

t—1

Applying this with y = 2*~* and subgradient g; and z = z* (which has f'(z*) =0

for some subgradient) gives

(9¢ = 0)F (2" = 2*) > pfla" ™t —2*|%.



Convergence Rate

Convergence Rate of Stochastic Subgradient

@ For full details of analyzing stochastic gradient under strong convexity, see:

e Constant a: http://circle.ubc.ca/bitstream/handle/2429/50358/
stochasticGradientConstant.pdf.
o Decreasing aj: http://arxiv.org/pdf/1212.2002v2.pdf.

@ For both cases under PL, see Theorem 4 here:
o https://arxiv.org/pdf/1608.04636v2.pdf


http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
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