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Last Time: Coordinate Optimization
In coordinate optimization we only update one variable on each iteration.

wk+1
jk

= wkjk − αk∇kf(wk),

More efficient than gradient descent if the iterations are d-times cheaper.
True for pairwise separable f like label propagation,

f(w) =

d∑

i=1

fi(wj) +
∑

(i,j)∈E
fij(wi, wj).

under random choice of jk.
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Convergence Rate of Randomized Coordinate Optimization
Last time we analyzed coordinate optimization assuming:

Coordinate-wise Lipschitz-continuity of ∇f and f satisfying PL inequality.
We choose coordinate to update jk uniformly at random.
Given jk, we take a gradient step on wjk with step-size αk = 1/L.

We showed that this leads to the bound

E[f(wk)]− f∗ ≤
(

1− µ

dL

)k
[f(wk)− f∗],

which means we need O
(
dLµ log(1/ε)

)
iterations to reach accuracy ε.

If d-times cheaper, gives cost of O
(
L
µ log(1/ε)

)
gradient descent iterations.

But L is smaller for coordinate descent, so total runtime is smaller.

For convex/non-convex functions, similar trade-off: O(L/ε) vs. O(dL/ε).



Stochastic Sub-Gradient Convergence Rate

Lipschitz Sampling

Can we do better than choosing jk uniformly at random?

You can go faster if you have an Lj for each coordinate:

|∇jf(w + γej)−∇jf(w)| ≤ Lj |γ|.

Using Ljk as the step-size and sampling jk proportional to Lj gives

E[f(wk)]− f∗ ≤
(

1− µ

dL̄

)w
[f(w0)− f∗],

where L̄ as the average Lipschitz constant (previously we used the maximum Lj).

For label propagation, this requires stronger assumptions on the graph structure:

We need expected number of edges connected to jk to be O(|E|/d).
This might not be true if the high-degree nodes have the highest Lj values.
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Greedy Gauss-Southwell Selection Rule

Our bound on the progress if we choose coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2.

and the “best” jk according to the bound is

jk ∈ argmax
j
{|∇jf(wk)|},

This is called greedy selection or the Gauss-Southwell rule.

x1 x2 x3
Gauss-Southwell
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Greedy Gauss-Southwell Selection Rule

Our bound on the progress if we choose coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2.

and the “best” jk according to the bound is

jk ∈ argmax
j
{|∇jf(wk)|},

This is called greedy selection or the Gauss-Southwell rule.

Can we ever find max gradient value d-times cheaper than computing gradient?
Yes, for pairwise-separable where maximum degree is similar to average degree.

Includes lattice-structured graphs, complete graphs, and Facebook graph.

You can efficiently track the gradient values and track the max with a max-heap.
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Gauss-Southwell Selection Rule

The progress bound under the greedy Gauss-Southwell rule is

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2∞,

and this leads to a faster rate of

f(wk)− f∗ ≤
(

1− µ1
L

)k
[f(w0)− f∗],

where µ1 is the PL constant in the ∞-norm

µ[f(w)− f∗] ≤ 1

2
‖f(w)‖2∞.

This is faster because µ
n ≤ µ1 ≤ µ (by norm equivalences).

If you know the Lj values, a faster rule is “Gauss-Southwell-Lipschitz”.
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Numerical Comparison of Coordinate Selection Rules
Comparison on problem where Gauss-Southwell has similar cost to random:
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“Cyclic” goes through the j in order: bad worst-case bounds but often works well
There also exist accelerated coordinate descent methods.
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Problems Suitable for Coordinate Optimization

We now know that many problems satisfy the “d-times faster” condition.

For example, composition of a smooth function with affine map plus separable

F (w) = f(Aw) +

d∑

j=1

fj(wj)

for a matrix A, smooth function f , and potentially non-smooth fj .
Includes L1-regularized least squares, logistic regression, etc.

Key idea: you can track Aw as you go for a cost O(n) instead of O(nd) (bonus).

In this setting, we get same rate as if non-smooth fj were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)

Recent works: coordinate optimization leads to faster PageRank methods.
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Finite-Sum Optimization Problems

Solving our standard regularized optimization problem

argmin
w∈Rd

n∑

i=1

f̄i(w) + r(w),

data fitting term + regularizer

is a special case of solving the generic finite-sum optimization problem

argmin
w∈Rd

1

n

n∑

i=1

fi(w),

where fi(w) = f̄i(w) + 1
nr(w).

Gradient methods are effective when d is very large.
What if number of training examples n is very large?

E.g., ImageNet has ≈ 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f(w) = 1
n

∑n
i=1 fi(w).

Deterministic gradient method [Cauchy, 1847]:

wk+1 = wk − αk∇f(wk) = wk − αk
n

n∑

i=1

∇fi(wk).

Iteration cost is linear in n.
Convergence with constant αk or line-search.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods
Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of ik from {1, 2, . . . , n}.
wk+1 = wk − αk∇fik(wk).

With p(ik = i), the stochastic gradient is an unbiased estimate of gradient,

E[∇fik(w)] =

n∑

i=1

p(ik = i)∇fi(w) =

n∑

i=1

1

n
∇fi(w) =

1

n

n∑

i=1

∇fi(w) = ∇f(w).

Iteration cost is independent of n.
Convergence requires αk → 0.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods
Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Stochastic

Convex O(1/
√
ε) O(1/ε2)

Strongly O(log(1/ε)) O(1/ε)

Stochastic has low iteration cost but slow convergence rate.

Sublinear rate even in strongly-convex case.
Bounds are unimprovable with “unbiased gradient approximation” oracle.

Oracle returns a gk satisfying E[gk] = ∇f(wk).

Momentum and Newton-like methods do not improve rates in stochastic case.

Can only improve constant factors.
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine (SVM) objective:

f(w) =

n∑

i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/ε2) O(1/ε2)
Strongly O(1/ε) O(1/ε)

So for non-smooth problems:

Deterministic methods are not faster than stochastic method.
So use stochastic subgradient (iterations are n times faster).
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Subgradient Method

The basic subgradient method:

wk+1 = wk − αkgk,

for some gk ∈ ∂f(wk).

Decreases distance to solution for small enough αk.

The basic stochastic subgradient method:

wk+1 = wk − αkgik ,

for some gik ∈ ∂fik(wk) for some random ik ∈ {1, 2, . . . , n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough αk.
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Convergence Rate of Stochastic Gradient Method

We’ll first show progress bound for stochastic gradient assuming ∇f is Lipschitz.

We’ll come back to the non-smooth case.

From the descent lemma we have

f(wk+1) ≤ f(wk) +∇f(wk)T (wk+1 − wk) +
L

2
‖wk+1 − wk‖2.

Using stochastic gradient iteration (wk+1 − wk) = −αk∇fik(wk) gives

f(wk+1) ≤ f(wk)− αk∇f(wk)T∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.
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Convergence Rate of Stochastic Gradient Method

So far any choice of αk and ik we have

f(wk+1) ≤ f(wk)− αk∇f(wk)T∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.

Let’s take the expectation with respect to ik assuming p(ik = i) = 1/n,

E[f(wk+1)] ≤ E[f(wk)− αk∇f(wk)T∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2]

= f(wk)− αk∇f(wk)TE[∇fik(wk)] + α2
k

L

2
E[‖∇fik(wk)‖2],

where the second line uses linearity of expectation (and αk not depending on ik).

We know that E[∇fik(wk)] = ∇f(wk) (unbiased) so this gives

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]

︸ ︷︷ ︸
bad

.
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Convergence Rate of Stochastic Gradient Method
So a progress bound for stochastic gradient is

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]

︸ ︷︷ ︸
bad

.

“Good” term looks like usual measure of progress: big gradient → big progress.
“Bad” term is the problem: less progress if gradients are very different.

And now choosing αk = 1/L might not be small enough.
But we can control badness: if αk is small then αk >> α2

k.

If we also assume PL then we get

E[f(wk+1)]− f∗ ≤ (1− 2αkµ)[f(wk)− f∗] + α2
k

L

2
E[‖∇fik(wk)‖2]

︸ ︷︷ ︸
bad

.

Looks like linear convergence if far from solution and gradients are similar..
No progress if close to solution or have high variance in gradients.
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Convergence Rate of Stochastic Subgradient Method

The basic stochastic subgradient method:

wk+1 = wk − αgik ,

for some gik ∈ ∂fik(wk) for some random ik ∈ {1, 2, . . . , n}.

We can’t use descent lemma because f is non-differentiable.

For convex f we can show a progress bound on distance to a w∗ (bonus)

E[‖wk+1 − w∗‖2] = ‖wk − w∗‖2︸ ︷︷ ︸
old distance

−2αk g
T
k (wk − w∗)︸ ︷︷ ︸

good

+α2
k E[‖gik‖2]︸ ︷︷ ︸

bad

,

where gk is a subgradient of f at wk (good term is positive by convexity).

Step-size αk controls how fast we move towards solution.

And squared step-size α2
k controls how much variance moves us away.
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Convergence Rate of Stochastic Subgradient

Standard assumption is that the E[‖∇f(w)‖2] is bounded by constant B2.

E[‖wk+1 − w∗‖2] ≤ ‖wk − w∗‖2︸ ︷︷ ︸
old distance

−2αk g
T
k (wk − w∗)︸ ︷︷ ︸

good

+α2
k B

2
︸︷︷︸
bad

,

If f is strongly-convex, then we further have that (bonus)

E[‖wk − w∗‖2] ≤ (1− 2αkµ)‖wk−1 − w∗‖2 + α2
kB

2.

If αk is small enough, shows distance to solution is guaranteed to decrease.

With constant αk = α (with α < 2/µ) and applying recursively we get (bonus)

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
αB2

2µ
,

where second term bounds a geometric series.
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Stochastic Gradient with Constant Step Size
Our bound on expected distance with constant step-size:

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
αB2

2µ
,

First term looks like linear convergence, but second term does not go to zero.
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Stochastic Gradient with Constant Step Size
Our bound on expected distance with constant step-size:

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
αB2

2µ
,

First term looks like linear convergence, but second term does not go to zero.
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Stochastic Gradient with Constant Step Size
Our bound on expected distance with constant step-size:

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
αB2

2µ
,

First term looks like linear convergence, but second term does not go to zero.
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Stochastic Gradient with Constant Step Size
Our bound on expected distance with constant step-size:

E[‖wk − w∗‖2] ≤ (1− 2αµ)k‖w0 − w∗‖2 +
αB2

2µ
,

First term looks like linear convergence, but second term does not go to zero.
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Summary

Better coordinate selection with Lipschitz sampling or Gauss-Southwell.

f(Ax) +
∑

j fj(wj) structure also allows coordinate optimization.

Even for non-smooth fj .

Stochastic subgadient method: same rate as subgradient but n times cheaper.

Constant step-size: subgradient quickly converges to approximate solution.

Next time: new stochastic methods with linear convergence, and the n =∞ case.
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Gauss-Southwell-Lipschitz
Our bound on the progress with an Lj for each coordinate is

f(wk+1) ≤ f(wk)− 1

2Ljk
|∇jkf(wk)|2.

The best coordinate to update according to this bound is

jk ∈ argmax
j

|∇jf(wk)|2
Lj

which is called the Gauss-Southwell-Lipschitz rule.
“If gradients are similar, pick the one that changes more slowly”.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

This is the optimal update for quadratic functions.
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Problems Suitable for Coordinate Optimization
We now know that many problems satisfy the “d-times faster” condition.

For example, consider composition of a smooth function with affine map,

F (w) = f(Aw),

for a matrix A and a smooth function g with cost of O(n).
(includes least squares and logistic regression)

Using f ′ as the gradient of f , the partial derivatives have the form

∇jF (x) = aTj f
′(Aw).

If we have Aw, this costs O(n) instead of O(nd) for the full gradient.

We can track the product Awk as we go with O(n) cost,

Awk+1 = A(wk + γkejk) = Awk︸︷︷︸
old value

+γk Aejk︸︷︷︸
O(n)

,
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Coordinate Optimization for Non-Smooth Objectives

We can apply coordinate optimization for problems of the form

F (x) = f(x)︸︷︷︸
smooth

+

d∑

j=1

fj(xj)

︸ ︷︷ ︸
separable

,

where the fj can be non-smooth.
This includes enforcing non-negative constraints, or using L1-regularization.

For proximal-PL F , with coordinate-wise proximal-gradient steps we have

E[f(wk)]− f∗ ≤
(

1− µ

dL

)k
[f(w0)− f∗],

the same convergence linear rate as if the non-smooth fj were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)
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Block Coordinate Descent

We can’t apply coordinate optimization for group L1-regularization.

Non-smooth term is non-separable, so coordinate optimization can get stuck.

Block coordinate optimization and block coordinate descent:

Update groups of variables on each iteration.

If you choose the “blocks” to be the “groups”, you can apply to group
L1-regularization.

Many problems have this “block” structure.

You might also use blocks to apply Newton’s method to the blocks.
This is efficient if the block size isn’t too big.
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Convergence Rate of Stochastic Subgradient Method

The basic stochastic subgradient method:

xt+1 = xt − αgit ,
for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.
Since function value may not decrease, we analyze distance to x∗:

‖xt − x∗‖2 = ‖(xt−1 − αtgit)− x∗‖2

= ‖(xt−1 − x∗)− αtgit‖2

= ‖xt−1 − x∗‖2 − 2αtg
T
it(x

t−1 − x∗) + α2
t ‖git‖2.

Take expectation with respect to it:

E[‖xt − x∗‖2] = E[‖xt−1 − x∗‖]− 2αtE[gTit(x
t−1 − x∗)] + α2

tE[‖git‖2]
= ‖xt−1 − x∗‖2︸ ︷︷ ︸

old distance

−2αt g
T
t (xt−1 − x∗)︸ ︷︷ ︸
expected progress

+α2
t E[‖git‖2]︸ ︷︷ ︸

“variance”

.
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Convergence Rate of Stochastic Subgradient

Our expected distance given xt−1 is

E[‖xt − x∗‖2] = ‖xt−1 − x∗‖2︸ ︷︷ ︸
old distance

−2αt g
T
t (xt−1 − x∗)︸ ︷︷ ︸
expected progress

+α2
t E[‖git‖2]︸ ︷︷ ︸

“variance”

.

Step-size αt controls how fast we move towards solution.

But squared step-size α2
t controls how much variance moves us away.

Standard assumption is that the variance is bounded by constant B2.

It follows from strong-convexity that (next slide),

gTt (xt−1 − x∗) ≥ µ‖xt−1 − x∗‖2,
which gives

E[‖xt − x∗‖2] ≤ ‖xt−1 − x∗‖2 − 2αtµ‖xt−1 − x∗‖2 + α2
tB

2

= (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.
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Strong-Convexity Inequalities for Non-Differentiable f
A “first-order” relationship between subgradient and strong-convexity:

If f is µ-strongly convex then for all x and y we have

f(y) ≥ f(x) + f ′(y)T (y − x) +
µ

2
‖y − x‖2,

for f ′(y) ∈ ∂f(x).
The first-order definition of strong-convexity, but with subgradient replacing gradient.
Reversing y and x we can write

f(x) ≥ f(y) + f ′(x)T (x− y) +
µ

2
‖x− y‖2,

for f ′(x) ∈ ∂f(x).
Adding the above together gives

(f ′(y)− f ′(x))T (y − x)) ≥ µ‖y − x‖2.
Applying this with y = xt−1 and subgradient gt and x = x∗ (which has f ′(x∗) = 0
for some subgradient) gives

(gt − 0)T (xt−1 − x∗) ≥ µ‖xt−1 − x∗‖2.
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Convergence Rate of Stochastic Subgradient

For full details of analyzing stochastic gradient under strong convexity, see:

Constant αk: http://circle.ubc.ca/bitstream/handle/2429/50358/

stochasticGradientConstant.pdf.
Decreasing αk: http://arxiv.org/pdf/1212.2002v2.pdf.

For both cases under PL, see Theorem 4 here:

https://arxiv.org/pdf/1608.04636v2.pdf

http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf
http://arxiv.org/pdf/1212.2002v2.pdf

	Stochastic Sub-Gradient
	Convergence Rate

