
Expectation Maximization

CPSC 540: Machine Learning
Expectation Maximization

Mark Schmidt

University of British Columbia

Winter 2019

Expectation Maximization

Last Time: Learning with MAR Values

We discussed learning with “missing at random” values in data:

X =



1.33 0.45 −0.05 −1.08 ?
1.49 2.36 −1.29 −0.80 ?
−0.35 −1.38 −2.89 −0.10 ?
0.10 −1.29 0.64 −0.46 ?
0.79 0.25 −0.47 −0.18 ?
2.93 −1.56 −1.11 −0.81 ?
−1.15 0.22 −0.11 −0.25 ?


Imputation approach:

Guess the most likely value of each ?, fit model with these values (and repeat).

K-means clustering algorithm is a special case:

Gaussian mixture (πc = 1/k, Σc = I) and ? being the cluster (? ∈ {1, 2, · · · , k}).

Expectation Maximization

Parameters, Hyper-Parameters, and Nuisance Parameters

Are the ? values “parameters” or “hyper-parameters”?

Parameters:

Variables in our model that we optimize based on the training set.

Hyper-Parameters

Variables that control model complexity, typically set using validation set.
Often become degenerate if we set these based on training data.
We sometimes add optimization parameters in here like step-size.

Nuisance Parameters

Not part of the model and not really controlling complexity.
An alternative to optimizing (“imputation”) is to integrate over these values.

Consider all possible imputations, and weight them by their probability.

Expectation Maximization

Expectation Maximization Notation

Expectation maximization (EM) is an optimization algorithm for MAR values:

Applies to problems that are easy to solve with “complete” data (i.e., you knew ?).
Allows probabilistic or “soft” assignments to MAR (or other nuisance) variables.

EM is among the most cited paper in statistics.

Imputation approach is sometimes called “hard” EM.

EM notation: we use O as observed data and H as hidden (?) data.

Semi-supervised learning: observe O = {X, y, X̄} but don’t observe H = {ȳ}.
Mixture models: observe data O = {X} but don’t observe clusters H = {zi}ni=1.

We use Θ as parameters we want to optimize.

In Gaussian mixtures this will be the πc, µc, and Σc variables.

Expectation Maximization

Complete Data and Marginal Likelihoods
Assume observing H makes “complete” likelihood p(O,H | Θ) “nice”.

It has a closed-form MLE, gives a convex NLL, or something like that.

From marginalization rule, likelihood of O in terms of “complete” likelihood is

p(O | Θ) =
∑
H1

∑
H2

· · ·
∑
Hm

p(O,H | Θ) =
∑
H

p(O,H | Θ)︸ ︷︷ ︸
“complete likelihood”

.

where we sum (or integrate) over all possible H ≡ {H1, H2, . . . ,Hm}.
For mixture models, this sums over all possible clusterings.

The negative log-likelihood thus has the form

− log p(O | Θ) = − log

(∑
H

p(O,H | Θ)

)
,

which has a sum inside the log.
This does not preserve convexity: minimizing it is usually NP-hard.

Expectation Maximization

Expectation Maximization Bound
To compute Θt+1, the approximation used by EM and imputation (“hard-EM”) is

− log

(∑
H

p(O,H | Θ)

)
≈ −

∑
H

αtH log p(O,H | Θ)

where αtH is a probability for the assignment H to the hidden variables.
Note that αtH changes on each iteration t.

Imputation sets αtH = 1 for the most likely H given Θt (all other αtH = 0).

In soft-EM we set αtH = p(H | O,Θt), weighting H by probability given Θt.

We’ll show the EM approximation minimizes an upper bound,

− log p(O | Θ) ≤ −
∑
H

p(H | O,Θt) log p(O,H | Θ)︸ ︷︷ ︸
Q(Θ | Θt)

+ const.,

Expectation Maximization

Expectation Maximization as Bound Optimization

Expectation maximization is a “bound-optimization” method:

At each iteration t we optimize a bound on the function.

In gradient descent, our bound came from Lipschitz-continuity of the gradient.

In EM, our bound comes from expectation over hidden variables (non-quadratic).

Expectation Maximization

Expectation Maximization (EM)

So EM starts with Θ0 and sets Θt+1 to maximize Q(Θ | Θt).

This is typically written as two steps:
1 E-step: Define expectation of complete log-likelihood given last parameters Θt,

Q(Θ | Θt) =
∑
H

p(H | O,Θt)︸ ︷︷ ︸
fixed weights αt

H

log p(O,H | Θ)︸ ︷︷ ︸
nice term

= EH | O,Θt [log p(O,H | Θ)],

which is a weighted version of the “nice” log p(O,H) values.
2 M-step: Maximize this expectation to generate new parameters Θt+1,

Θt+1 = argmax
Θ

Q(Θ | Θt).

Expectation Maximization

Expectation Maximization for Mixture Models

In the case of a mixture model with extra “cluster” variables zi EM uses

Q(Θ | Θt) = Ez | X,Θ[log p(X, z | Θ)]

=

k∑
z1=1

k∑
z2=1

· · ·
k∑

zn=1

p(z | X,Θt)︸ ︷︷ ︸
αz

log p(X, z | Θ)︸ ︷︷ ︸
“nice”

=

k∑
z1=1

k∑
z2=1

· · ·
k∑

zn=1

(
n∏
i=1

p(zi | xi,Θt)

)(
n∑
i=1

log p(xi, zi | Θ)

)
= (see EM notes, tedious use of distributive law and independences)

=

n∑
i=1

k∑
zi=1

p(zi | xi,Θt) log p(xi, zi | Θ).

Sum over kn clusterings turns into sum over nk 1-example assignments.
Same simplification happens for semi-supervised learning, we’ll discuss why later.

Expectation Maximization

Expectation Maximization for Mixture Models

In the case of a mixture model with extra “cluster” variables zi EM uses

Q(Θ | Θt) =

n∑
i=1

k∑
zi=1

p(zi | xi,Θt)︸ ︷︷ ︸
ric

log p(xi, zi | Θ).

This is just a weighted version of the usual likelihood.
We just need to do MLE in weighted Gaussian, weighted Bernoulli, etc.

We typically write update in terms of responsibilitites (easy to calculate),

ric , p(zi = c | xi,Θt) =
p(xi | zi = c,Θt)p(zi = c | Θt)

p(xi | Θt)
(Bayes rule),

the probability that cluster c generated xi.

By marginalization rule, p(xi | Θt) =
∑k
c=1 p(x

i | zi = c,Θt)p(zi = c | Θt).
In k-means if ric = 1 for most likely cluster and 0 otherwise.

Expectation Maximization

Expectation Maximization for Mixture of Gaussians

For mixture of Gaussians, E-step computes all ric and M-step minimizes the
weighted NLL:

πt+1
c =

1

n

n∑
i=1

ric (proportion of examples soft-assigned to cluster c)

µt+1
c =

1∑n
i=1 r

i
c

n∑
i=1

ricx
i (mean of examples soft-assigned to cluster c)

Σt+1
c =

1∑n
i=1 r

i
c

n∑
i=1

ric(x
i − µt+1

c)(xi − µt+1
c)> (covariance of examples soft-assigned to c).

Now you would compute new responsibilities and repeat.
Notice that there is no step-size.

EM for fitting mixture of Gaussians in action:
https://www.youtube.com/watch?v=B36fzChfyGU

https://www.youtube.com/watch?v=B36fzChfyGU

Expectation Maximization

Discussing of EM for Mixtures of Gaussians
EM and mixture models are used in a ton of applications.

One of the default unsupervised learning methods.

EM usually doesn’t reach global optimum.
Classic solution: restart the algorithm from different initializations.
Lots of work in CS theory on getting better initializations.

MLE for some clusters may not exist (e.g., only responsible for one point).
Use MAP estimates or remove these clusters.

How do you choose number of mixtures k?
Use validation-set likelihood (this is sensible because probabilities are normalized).

But can’t use “distance to nearest mean”.

Use a model selection criteria (like BIC).

Can you make it robust?
Use mixture of Laplace of student t distributions.

Are there alternatives to EM?
Could use gradient descent on NLL.
Spectral and other recent methods have some global guarantees.

Expectation Maximization

Summary

Expectation maximization:

Optimization with MAR variables, when knowing MAR variables make problem easy.
Instead of imputation, works with “soft” assignments to nuisance variables.
Maximizes log-likelihood, weighted by all imputations of hidden variables.

Next time: generalizing histograms?

Expectation Maximization

Generative Mixture Models and Mixture of Experts

Classic generative model for supervised learning uses

p(yi | xi) ∝ p(xi | yi)p(yi),

and typically p(xi | yi) is assumed Gaussian (LDA) or independent (naive Bayes).

But we could allow more flexibility by using a mixture model,

p(xi | yi) =

k∑
c=1

p(zi = c | yi)p(xi | zi = c, yi).

Another variation is a mixture of disciminative models (like logistic regression),

p(yi | xi) =

k∑
c=1

p(zi = c | xi)p(yi | zi = c, xi).

Called a “mixture of experts” model:
Each regression model becomes an “expert” for certain values of xi.

	Expectation Maximization

