
L1-Regularization and Sub-Gradients Projected-Gradient Methods

CPSC 540: Machine Learning
Subgradients and Projected Gradient

Mark Schmidt

University of British Columbia

Winter 2019

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Admin

Auditting/registration:

Today is last day to add/drop.

Assignment 1:

1 late day to hand in tonight, 2 late days for Wednesday.

No tutorial this week.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Last Time: Iteration Complexity

We discussed the iteration complexity of an algorithm for a problem class:

“How many iterations t before we guarantee an accuracy ε”?

Iteration complexity of gradient descent when ∇f is Lipschitz continuous:

Assumption Iteration Complexity Quantity

Non-Convex t = O(1/ε) mink=0,2,...,t−1 ‖∇f(wk)‖2 ≤ ε
Convex t = O(1/ε) f(wt)− f∗ ≤ ε
Strongly-Convex t = O(log(1/ε)) f(wt)− f∗ ≤ ε

Adding L2-regularization to a convex function gives a strongly-convex function.

So L2-regularization can make gradient descent converge much faster.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Nesterov Acceleration (Strongly-Convex Case)

We showed that gradient descent for strongly-convex functions has

f(wk)− f∗ ≤
(

1− µ

L

)k
[f(w0)− f∗].

Applying accelerated gradient methods to strongly-convex gives

f(wk)− f∗ ≤
(

1−
√
µ

L

)k
[f(w0)− f∗],

which is a faster linear convergence rate
(αk = 1/L, βk = (

√
L−√µ)/(

√
L+
√
µ)).

This nearly acheives optimal possible dimension-independent rate.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Newton and Newton-Like Algorithms

Alternately, Newton’s method achieves superlinear convergence rate.

Under strong-convexity and using both ∇f and ∇2f being Lipschitz.
But unfortunately this gives a superlinear iteration cost.

There are linear-time approximations to Newton (see bonus):

Barzilai-Borwein step-size for gradient descent (findMin.jl).
Limited-memory Quasi-Newton methods like L-BFGS.
Hessian-free Newton methods (uses conjugate gradient to compute Newton step).

Work amazing for many problems, but don’t achieve superlinear convergence.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Motivation: Automatic Brain Tumour Segmentation

Task: identifying tumours in multi-modal MRI data.

Applications:

Image-guided surgery.
Radiation target planning.
Quantifying treatment response.
Discovering growth patterns.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Motivation: Automatic Brain Tumour Segmentation

Formulate as supervised learning:

Pixel-level classifier that predicts “tumour” or “non-tumour”.
Features: convolutions, expected values (in aligned template), and symmetry.

All at multiple scales.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Motivation: Automatic Brain Tumour Segmentation

Logistic regression was among most effective models, with the right features.

But if you used all features, it overfit.

We needed feature selection.

Classical approach:

Define some score: AIC, BIC, cross-validation error, etc.
Search for features that optimize score:

Usually NP-hard, so we use greedy: forward selection, backward selection,. . .

In brain tumour application, even greedy methods were too slow.

Just one image gives 8 million training examples.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Feature Selection

General feature selection problem:

Given our usual X and y, we’ll use xj to represent column j:

X =

x1 x2 . . . xd

 , y =

y
 .

We think some features/columns xj are irrelevant for predicting y.

We want to fit a model that uses the “best” set of features.

One of most important problems in ML/statistics, but very very messy.

In 340 we saw how difficult it is to define what “relevant” means.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

L1-Regularization

A popular appraoch to feature selection we saw in 340 is L1-regularization:

F (w) = f(w) + λ‖w‖1.

Advantages:
Fast: can apply to large datasets, just minimizing one function.

Convex if f is convex.

Reduces overfitting because it simultaneously regularizes.

Disadvantages:
Prone to false positives, particularly if you pick λ by cross-validation.
Not unique: there may be infinite solutions.

There exist many extensions:
“Elastic net” adds L2-regularization to make solution unique.
“Bolasso” applies this on bootstrap samples to reduce false positives.
Non-convex regularizers reduce false positives but are NP-hard.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

L1-Regularization

Key property of L1-regularization: if λ is large, solution w∗ is sparse:

w∗ has many values that are exactly zero.

How setting variables to exactly 0 performs feature selection in linear models:

ŷi = w1x
i
1 + w2x

i
2 + w3x

i
3 + w4x

i
4 + w5x

i
5.

If w =
[
0 0 3 0 −2

]>
then:

ŷi = 0xi1 + 0xi2 + 3xi3 + 0xi4 + (−2)xi5

= 3xi3 − 2xi5.

Features {1, 2, 4} are not used in making predictions: we “selected” {2, 5}.
To understand why variables are set to exactly 0, we need the notion of subgradient.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Sub-Gradients and Sub-Differentials
Differentiable convex functions are always above tangent,

f(v) ≥ f(w) +∇f(w)>(v − w), ∀w, v.

A vector d is a subgradient of a convex function f at w if

f(v) ≥ f(w) + d>(v − w),∀v.

f(x)

f(x) + ∇f(x)T(y-x)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Sub-Gradients and Sub-Differentials
Differentiable convex functions are always above tangent,

f(v) ≥ f(w) +∇f(w)>(v − w), ∀w, v.

A vector d is a subgradient of a convex function f at w if

f(v) ≥ f(w) + d>(v − w),∀v.

f(x)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Sub-Gradients and Sub-Differentials Properties

We can have a set of subgradients called the sub-differential, ∂f(w).

Subdifferential is all the possible “tangent” lines.

For convex functions:

Sub-differential is always non-empty (except some weird degenerate cases).
At differentiable w, the only subgradient is the gradient.
At non-differentiable w, there will be a convex set of subgradients.

We have 0 ∈ ∂f(w) iff w is a global minimum.

This generalizes the condition that ∇f(w) = 0 for differentiable functions.

For non-convex functions:

“Global” subgradients may not exist for every w.
Instead, we define subgradients “locally” around current w.

This is how you define “gradient” of ReLU function in neural networks.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Example: Sub-Differential of Absolute Function

Sub-differential of absolute value function:

∂|w| =


1 w > 0

−1 w < 0

[−1, 1] w = 0

“Sign of the variable if it’s non-zero, anything in [−1, 1] if it’s zero.”

f(x)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Example: Sub-Differential of Absolute Function

Sub-differential of absolute value function:

∂|w| =


1 w > 0

−1 w < 0

[−1, 1] w = 0

“Sign of the variable if it’s non-zero, anything in [−1, 1] if it’s zero.”

f(0)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Sub-Differential of Common Operations
Two convenient rules for calculating subgradients of convex functions:

Sub-differential of max is all convex combinations of argmax gradients:

∂max{f1(x), f2(x)} =


∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x)︸ ︷︷ ︸
for all 0 ≤ θ ≤ 1

f1(x) = f2(x)

This rules gives sub-differential of absolute value, using that |α| = max{α,−α}.

Sub-differential of sum is all sum of subgradients of individual functions:

∂(f1(x) + f2(x)) = d1 + d2 for any d1 ∈ ∂f1(x), d2 ∈ ∂f2(x).

Sub-differential of composition with affine function works like the chain rule:

∂f1(Aw) = A>∂f1(z), where z = Aw,

and we also have ∂αf(w) = α∂f(w) for α > 0.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Why does L1-Regularization but not L2-Regularization give Sparsity?

Consider L2-regularized least squares,

f(w) =
1

2
‖Xw − y‖2 +

λ

2
‖w‖2.

Element j of the gradient at wj = 0 is given by

∇jf(w) = x>j (Xw − y)︸ ︷︷ ︸
r

+λ0.

For wj = 0 to be a solution, we need 0 = ∇jf(w∗) or that

0 = x>j r
∗ where r∗ = Xw∗ − y for the solution w∗

that column j is orthogonal to the final residual.

This is possible, but it is very unlikely (probability 0 for random data).
Increasing λ doesn’t help.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Why does L1-Regularization but not L2-Regularization give Sparsity?
Consider L1-regularized least squares,

f(w) =
1

2
‖Xw − y‖2 +

λ

2
‖w‖1.

Element j of the subdifferential at wj = 0 is given by

∂jf(w) ≡ x>j (Xw − y)︸ ︷︷ ︸
r

+λ [−1, 1]︸ ︷︷ ︸
∂|wj |

.

For wj = 0 to be a solution, we need 0 ∈ ∂jf(w∗) or that

0 ∈ xTj r∗ + λ[−1, 1] or equivalently

−xTj r∗ ∈ λ[−1, 1] or equivalently

|x>j r∗|≤ λ,
that column j is “close to” orthogonal to the final residual.

So features j that have little to do with y will often lead to wj = 0.
Increasing λ makes this more likely to happen.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Outline

1 L1-Regularization and Sub-Gradients

2 Projected-Gradient Methods

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Solving L1-Regularization Problems

How can we minimize non-smooth L1-regularized objectives?

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1.

Use our trick to formulate as a quadratic program?

O(d2) or worse.

Make a smooth approximation to the L1-norm?

Destroys sparsity (we’ll again just have one subgradient at zero).

Use a subgradient method?

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Subgradient Method
The basic subgradient method:

wk+1 = wk − αkgk,
for some gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Subgradient Method
The basic subgradient method:

wk+1 = wk − αkgk,
for some gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Subgradient Method

The basic subgradient method:

wk+1 = wk − αkgk,

for some gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Subgradient Method

The basic subgradient method:

wk+1 = wk − αkgk,

for some gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Subgradient Method

The basic subgradient method:

wk+1 = wk − αkgk,

for some gk ∈ ∂f(wk).

This can increase the objective even for small αk.
Though for convex f the distance to solutions decreases:

‖wk+1 − w∗‖ < ‖wk − w∗‖ for small enough αk.

The subgradients gk don’t necessarily converge to 0 as we approach a w∗.
If we are at a solution w∗, we might move away from it.
So as in stochastic gradient, we need decreasing step-sizes like

αk = O(1/k), or αk = O(1/
√
k),

in order to converge.
This destroys performance.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Convergence Rate of Subgradient Methods

Subgradient methods are slower than gradient descent:
Assumption Gradient Subgradient Quantity

Convex O(1/ε) O(1/ε2) f(wt)− f∗ ≤ ε
Strongly-Convex O(log(1/ε)) O(1/ε) f(wt)− f∗ ≤ ε

Other subgradient-based methods are not faster.
There are matching lower bounds in dimension-independent setting.
Includes cutting plane and bundle methods.

Also, acceleration doesn’t improve subgradient rates.
We do NOT go from O(1/ε2) to O(1/ε) by adding momentum.

Smoothing f and applying gradient descent doesn’t help.
May need to have L = 1/ε in a sufficiently-accurate smooth approximation.
However, if you smooth and accelerate you can close the gaps a bit (bonus).

L1-Regularization and Sub-Gradients Projected-Gradient Methods

The Key to Faster Methods

How can we achieve the speed of gradient descent on non-smooth problems?

Make extra assumptions about the function/algorithm f .

For L1-regularized least squares, we’ll use that the objective has the form

F (w) = f(w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
“simple”

,

that it’s the sum of a smooth function and a “simple” function.

We’ll define “simple” later, but simple functions can be non-smooth.

Proximal-gradient methods have rates of gradient descent for such problems.

A generalization of projected gradient methods.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Projected-Gradient for Non-Negative Constraints

We used projected gradient in 340 for NMF to find non-negative solutions,

argmin
w≥0

f(w).

In this case the algorithm has a simple form,

wk+1 = max{0, wk − αk∇f(wk)︸ ︷︷ ︸
gradient descent

},

where the max is taken element-wise.

“Do a gradient descent step, set negative values to 0.”

An obvious algorithm to try, and works as well as unconstrained gradient descent.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

A Broken “Projected-Gradient” Algorithms

Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin
w∈C

f(w).

As another example, we often want w to be a probability,

argmin
w≥0, 1>w=1

f(w),

Based on our “set negative values to 0” intuition, we might consider this:
1 Perform an unconstrained gradient descent step.
2 Set negative values to 0 and divide by the sum.

This algorithms does NOT work.

But it can be fixed if we use the projection onto the set in Step 2...

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Projected-Gradient

wk+
1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

‖v − wk+
1
2 ‖︸ ︷︷ ︸

projection step

.

Feasible Set

x - !f’(x)
f(x)

x

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Projected-Gradient

wk+
1
2 = wk − αk∇f(wk)︸ ︷︷ ︸

gradient step

, wk+1 ∈ argmin
v∈C

‖v − wk+
1
2 ‖︸ ︷︷ ︸

projection step

.

Feasible Set

x+

f(x)

x

x - !f’(x)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Summary

L1-regularization: feature selection as convex optimization.

Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Projected-gradient allows optimization with simple constraints.

Next time: going beyond L1-regularization to “structured sparsity”.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Complexity of Minimizing Strongly-Convex Functions

For strongly-convex functions:

Sub-gradient methods achieve optimal rate of O(1/ε).
If ∇f is Lipschitz continuous, we’ve shown that gradient descent has O(log(1/ε)).

Nesterov’s algorithms improves this from O(Lµ log(1/ε)) to O(
√

L
µ log(1/ε)).

Corresponding to linear convergence rate with ρ = (1−
√

µ
L).

This is close to the optimal dimension-independent rate of ρ =
(√

L−√µ√
L+
√
µ

)2
.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Newton’s Method
Newton’s method is a second-order strategy.

(also called IRLS for functions of the form f(Ax))

Modern form uses the update

xk+1 = xk − αkdk,
where dk is a solution to the system

∇2f(xk)dk = ∇f(xk).
(Assumes ∇2f(xk) � 0)

Equivalent to minimizing the quadratic approximation:

f(y) ≈ f(xk) +∇f(xk)>(y − xk) +
1

2αk
(y − xk)∇2f(xk)(y − xk).

We can generalize the Armijo condition to

f(xk+1) ≤ f(xk) + γα∇f(xk)>dk.

Has a natural step length of αk = 1.
(always accepted when close to a minimizer)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Newton’s Method

f(x)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Newton’s Method

f(x)

x

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Newton’s Method

f(x)

x - !f’(x)

x

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Newton’s Method

Q(x)
f(x)

x

x - !f’(x)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Newton’s Method

f(x)

xk - !H-1f’(x)

x

x - !f’(x)
Q(x)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Convergence Rate of Newton’s Method

If µI � ∇2f(x) � LI and ∇2f(x) is Lipschitz-continuous,
then close to x∗ Newton’s method has local superlinear convergence:

f(xk+1)− f(x∗) ≤ ρk[f(xk)− f(x∗)],

with limk→∞ ρk = 0.

Converges very fast, use it if you can!

But Newton’s method is expensive if dimension d is large:

Requires solving ∇2f(xk)dk = ∇f(xk).

“Cubic regularization” of Newton’s method gives global convergence rates.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Diagonal approximation:

Approximate Hessian by a diagonal matrix D (cheap to store/invert).
A common choice is dii = ∇2

iif(x
k).

This sometimes helps, often doesn’t.

Limited-memory quasi-Newton approximation:

Approximates Hessian by a diagonal plus low-rank approximation Bk,

Bk = D + UV k,

which supports fast multiplication/inversion.
Based on “quasi-Newton” equations which use differences in gradient values.

(∇f(xk)−∇f(xk−1)) = B>(xk − xk−1).

A common choice is L-BFGS.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Barzilai-Borwein approximation:

Approximates Hessian by the identity matrix (as in gradient descent).
But chooses step-size based on least squares solution to quasi-Newton equations.

αk+1 = −αk
vk∇f(xk)
‖vk‖2 , where vk = ∇f(xk)−∇f(xk−1).

Works better than it deserves to (findMin.jl).
We don’t understand why it works so well.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Practical Approximations to Newton’s Method

Practical Newton-like methods (that can be applied to large-scale problems):
Hessian-free Newton:

Uses conjugate gradient to approximately solve Newton system.
Requires Hessian-vector products, but these cost same as gradient.
If you’re lazy, you can numerically approximate them using

∇2f(xk)d ≈ ∇f(x
k + δd)−∇f(xk)

δ
.

If f is analytic, can compute exactly by evaluating gradient with complex numbers.
(look up “complex-step derivative”)

A related appraoch to the above is non-linear conjugate gradient.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:
—————————————
x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)
—————————————
x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)
x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)
x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)
x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)
x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Superlinear Convergence in Practice?

You get local superlinear convergence if:

Gradient is Lipschitz-continuous and f is strongly-convex.
Function is in C2 and Hessian is Lipschitz continuous.
Oracle is second-order and method asymptotically uses Newton’s direction.

But the practical Newton-like methods don’t achieve this:

Diagonal scaling, Barzilai-Borwein, and L-BFGS don’t converge to Newton.
Hessian-free uses conjugate gradient which isn’t superlinear in high-dimensions.

Full quasi-Newton methods achieve this, but require Ω(d2) memory/time.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

L1-Regularization vs. L2-Regularization

Another view on sparsity of L2- vs. L1-regularization using our constraint trick:

argmin
w∈Rd

f(w) + λ‖w‖p ⇔ argmin
w∈Rd,τ∈R

f(w) + λτ with τ ≥ ‖w‖p.

Notice that L2-regularization has a rotataional invariance.

This actually makes it more sensitive to irrelevant features.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Does Smoothing Help?

Nesterov’s smoothing paper gives a way to take a non-smooth convex f and
number ε, then it constructs a new function fε such that

f(w) ≤ fε(w) ≤ f(w) + ε,

so that minimizing fε(w) gets us within ε of the optimal solution.
And further that fε(w) is differentiable with L = O(1/ε).

If we apply gradient descent to the smooth function, we get

t = O(L/ε)︸ ︷︷ ︸
smoothed problem

= O(1/ε2)︸ ︷︷ ︸
original problem

,

for convex functions (same speed as subgradient).

For strongly-convex functions we get

t = O(L log(1/ε)) = O((1/ε) log(1/ε)),

which is actually worse than the best subgradient methods by a log factor.

L1-Regularization and Sub-Gradients Projected-Gradient Methods

Does Smoothing Help?

Nesterov’s smoothing paper gives a way to take a non-smooth convex f and
number ε, then it constructs a new function fε such that

f(w) ≤ fε(w) ≤ f(w) + ε,

so that minimizing fε(w) gets us within ε of the optimal solution.
And further that fε(w) is differentiable with L = O(1/ε).

If we apply accelerated gradient descent to the smooth function, we get

t = O(
√
L/ε) = O(1/ε),

which is faster than subgradient methods.
(same speed as unaccelerated gradient descent)

For strongly-convex functions the accelerated method gets

t = O(
√
L log(1/ε)) = O((1/

√
ε) log(1/ε)),

which is faster than subgradient methods (but not linear converence).

L1-Regularization and Sub-Gradients Projected-Gradient Methods

What is the best subgradient?

We considered the deterministic subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −gt that minimizes directional derivative is minimum-norm subgradient,

gt = argmin
g∈∂f(xt)

||g||

This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Used in best deterministic L1-regularization methods, combined with Newton.

	L1-Regularization and Sub-Gradients
	Projected-Gradient Methods

