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Admin

e Auditting/registration:
o Today is last day to add/drop.

@ Assignment 1:
e 1 late day to hand in tonight, 2 late days for Wednesday.

@ No tutorial this week.
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Last Time: Iteration Complexity

@ We discussed the iteration complexity of an algorithm for a problem class:
e "How many iterations ¢ before we guarantee an accuracy €7

@ lteration complexity of gradient descent when V f is Lipschitz continuous:

Assumption Iteration Complexity Quantity
Non-Convex t=0(1/e) ming_g2, 1 ||VF(wF)|? <e
Convex t=0(1/e) flwh) — f* <e
Strongly-Convex t = O(log(1/e)) flwt) — f*<e

e Adding L2-regularization to a convex function gives a strongly-convex function.
e So L2-regularization can make gradient descent converge much faster.



Nesterov Acceleration (Strongly-Convex Case)

o We showed that gradient descent for strongly-convex functions has

Fh) - £ < (1= ) ) - 71

@ Applying accelerated gradient methods to strongly-convex gives

rh) - p < (1- ;ﬁ)k () - 17,

which is a faster linear convergence rate

(ar, = 1/L, Br = (VL — B)/(VL + /).

@ This nearly acheives optimal possible dimension-independent rate.



Newton and Newton-Like Algorithms

@ Alternately, Newton's method achieves superlinear convergence rate.

o Under strong-convexity and using both Vf and V2 f being Lipschitz.
o But unfortunately this gives a superlinear iteration cost.

@ There are linear-time approximations to Newton (see bonus):

o Barzilai-Borwein step-size for gradient descent (findMin.jl).
o Limited-memory Quasi-Newton methods like L-BFGS.
o Hessian-free Newton methods (uses conjugate gradient to compute Newton step).

@ Work amazing for many problems, but don't achieve superlinear convergence.



Motivation: Automatic Brain Tumour Segmentation

@ Task: identifying tumours in multi-modal MRI data.

@ Applications:

o Image-guided surgery.
Radiation target planning.
Quantifying treatment response.
Discovering growth patterns.



Motivation: Automatic Brain Tumour Segmentation

e Formulate as supervised learning:

o Pixel-level classifier that predicts “tumour” or “non-tumour”.
o Features: convolutions, expected values (in aligned template), and symmetry.

o All at multiple scales.
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Motivation: Automatic Brain Tumour Segmentation

@ Logistic regression was among most effective models, with the right features.
@ But if you used all features, it overfit.
o We needed feature selection.

@ Classical approach:
e Define some score: AIC, BIC, cross-validation error, etc.
e Search for features that optimize score:
@ Usually NP-hard, so we use greedy: forward selection, backward selection,. ..
e In brain tumour application, even greedy methods were too slow.

@ Just one image gives 8 million training examples.
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Feature Selection

@ General feature selection problem:
o Given our usual X and y, we'll use x; to represent column j:

X = r1T T2 ... Td| y=1Yy
o We think some features/columns x; are irrelevant for predicting y.

@ We want to fit a model that uses the “best” set of features.

@ One of most important problems in ML /statistics, but very very messy.
e In 340 we saw how difficult it is to define what “relevant” means.



L1-Regularization and Sub-Gradients Projected-Gradient Methods

L1-Regularization

A popular appraoch to feature selection we saw in 340 is L1-regularization:

Fw) = f(w) + Aw]:.

Advantages:
o Fast: can apply to large datasets, just minimizing one function.
o Convex if f is convex.
e Reduces overfitting because it simultaneously regularizes.
@ Disadvantages:
e Prone to false positives, particularly if you pick A by cross-validation.
o Not unique: there may be infinite solutions.

@ There exist many extensions:
o “Elastic net” adds L2-regularization to make solution unique.
o “Bolasso” applies this on bootstrap samples to reduce false positives.
e Non-convex regularizers reduce false positives but are NP-hard.
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L1-Regularization

@ Key property of L1-regularization: if X is large, solution w* is sparse:
e w™* has many values that are exactly zero.
@ How setting variables to exactly 0 performs feature selection in linear models:

i = wixl + worh + wsxh + wyxl + wsr.
T
olfw=[0 0 3 0 —2] then:

§" = 0z} 4 0z + 324 + 0z’ + (—2)

= 32} — 2x%.

Features {1,2,4} are not used in making predictions: we “selected” {2,5}.
e To understand why variables are set to exactly 0, we need the notion of subgradient.
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Sub-Gradients and Sub-Differentials

Differentiable convex functions are always above tangent,

f) > fw) + V) (v —w),Yw,v.

A vector d is a subgradient of a convex function f at w if

f) > f(w) +d" (v—w),VYo.
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Sub-Gradients and Sub-Differentials

Differentiable convex functions are always above tangent,

flw) > f(w) + Vf(w)T(v —w),Yw,v.

A vector d is a subgradient of a convex function f at w if

flw) > f(w) + dT(v —w), Vo.
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Sub-Gradients and Sub-Differentials Properties

@ We can have a set of subgradients called the sub-differential, Jf(w).
o Subdifferential is all the possible “tangent” lines.

@ For convex functions:

o Sub-differential is always non-empty (except some weird degenerate cases).
e At differentiable w, the only subgradient is the gradient.
e At non-differentiable w, there will be a convex set of subgradients.

o We have 0 € 0f(w) iff w is a global minimum.
e This generalizes the condition that V f(w) = 0 for differentiable functions.

@ For non-convex functions:

o "Global” subgradients may not exist for every w.
e Instead, we define subgradients “locally” around current w.

@ This is how you define “gradient” of ReLU function in neural networks.
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Example: Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 w >0
Jw| =< -1 w <0
[—1,1] w=0

o "Sign of the variable if it's non-zero, anything in [—1,1] if it's zero.”

f(x)
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Example: Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 w >0
Jw| =14 -1 w <0
[—1,1] w=0

o "Sign of the variable if it's non-zero, anything in [—1,1] if it's zero.”
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Sub-Differential of Common Operations

@ Two convenient rules for calculating subgradients of convex functions:
e Sub-differential of max is all convex combinations of argmax gradients:

Vfi(z) fi(x) > fa(z)
V fa(x) fa(z) > fi(z)
OVfi(z) + (1= 0)Vfa(z) fi(z) = fo()

forall0 <6 <1

dmax{ fi(x), fa(x)} =

o This rules gives sub-differential of absolute value, using that || = max{«a, —a}.

o Sub-differential of sum is all sum of subgradients of individual functions:
(fi(z) + fa(z)) = d1 +d2 forany di € 0fi(z),dz € Ofa(z).
e Sub-differential of composition with affine function works like the chain rule:
Of1(Aw) = ATOf1(2), where z= Aw,

and we also have daf (w) = adf(w) for a > 0.
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Why does L1-Regularization but not L2-Regularization give Sparsity?

o Consider L2-regularized least squares,
1 A
flw) = Sl Xw —y|* + S[lw|.
2 2
@ Element j of the gradient at w; = 0 is given by

Vif(w) = x;r (Xw —y) +A0.

T

e For wj =0 to be a solution, we need 0 = V, f(w*) or that
0= J:J-Tr* where r* = Xw* — y for the solution w*

that column j is orthogonal to the final residual.

e This is possible, but it is very unlikely (probability 0 for random data).
e Increasing A\ doesn't help.



L1-Regularization and Sub-Gradients Projected-Gradient Methods

Why does L1-Regularization but not L2-Regularization give Sparsity?

@ Consider L1-regularized least squares,
1 A
Fw) = 51X w — g+ 5 .
o Element j of the subdifferential at w; = 0 is given by
0if(w) = x]T (Xw—y)+A[—1,1].
~— ~——
T Olw;|

e For wj =0 to be a solution, we need 0 € 0, f(w*) or that

0¢€ x?r* + A[—1,1] or equivalently
—x;‘rr* € A-1,1] or equivalently
T
‘xj 7’*|§ Aa

that column j is “close to" orthogonal to the final residual.
o So features j that have little to do with y will often lead to w; = 0.
e Increasing A makes this more likely to happen.
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Outline

© Projected-Gradient Methods
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Solving L1-Regularization Problems

@ How can we minimize non-smooth L1-regularized objectives?

!
argmin = || Xw — y[|> + A|w|;.
weR? 2
@ Use our trick to formulate as a quadratic program?
e O(d?) or worse.

@ Make a smooth approximation to the L1-norm?

o Destroys sparsity (we'll again just have one subgradient at zero).

Use a subgradient method?

Projected-Gradient Methods
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Subgradient Method

@ The basic subgradient method:

k+1 _ K
w =W — gk,

for some g € Of(wh).
@ This can increase the objective even for small ay.

e Though for convex f the distance to solutions decreases:
o ||w*tt —w*| < |jw* —w*|| for small enough ay,.
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Subgradient Method
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k+1 _ K
w =W — gk,
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Subgradient Method

@ The basic subgradient method:

k+1 k
= w" — aggy,

for some g € Of (w®).

@ This can increase the objective even for small ay.

e Though for convex f the distance to solutions decreases:

k+1

o ||w*tt —w*| < |Jw* —w*|| for small enough ay.
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Subgradient Method

@ The basic subgradient method:

k+1 k
= w" — aggy,

for some g € Of (w®).

@ This can increase the objective even for small ay.

e Though for convex f the distance to solutions decreases:

k+1

o ||w*tt —w*| < |Jw* —w*|| for small enough ay.
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Subgradient Method

@ The basic subgradient method:

k+1

k
w =W — oGk,

for some g, € Of (w).

@ This can increase the objective even for small ay.
e Though for convex f the distance to solutions decreases:
o ||w ! —w*|| < ||lw* — w*| for small enough .

@ The subgradients g; don't necessarily converge to 0 as we approach a w*.
o If we are at a solution w*, we might move away from it.
e So as in stochastic gradient, we need decreasing step-sizes like

o =O0(1/k), or ai=0(1/Vk),

in order to converge.
o This destroys performance.
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Convergence Rate of Subgradient Methods

@ Subgradient methods are slower than gradient descent:
Assumption Gradient Subgradient Quantity

Convex O(1/¢) O(1/€%) flwh) — f*<e
Strongly-Convex  O(log(1/€)) O(1/e) flwt) — f*<e

@ Other subgradient-based methods are not faster.

o There are matching lower bounds in dimension-independent setting.
e Includes cutting plane and bundle methods.

@ Also, acceleration doesn't improve subgradient rates.
o We do NOT go from O(1/€?) to O(1/€) by adding momentum.

@ Smoothing f and applying gradient descent doesn't help.

e May need to have L = 1/e in a sufficiently-accurate smooth approximation.
o However, if you smooth and accelerate you can close the gaps a bit (bonus).
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The Key to Faster Methods

@ How can we achieve the speed of gradient descent on non-smooth problems?
o Make extra assumptions about the function/algorithm f.

@ For L1-regularized least squares, we'll use that the objective has the form
F(w) = f(w) + r(w) ,
—— —~—
smooth  “simple”

that it's the sum of a smooth function and a “simple” function.
o We'll define “simple” later, but simple functions can be non-smooth.

@ Proximal-gradient methods have rates of gradient descent for such problems.
e A generalization of projected gradient methods.
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Projected-Gradient for Non-Negative Constraints

o We used projected gradient in 340 for NMF to find non-negative solutions,

argmin f(w).

w>0
@ In this case the algorithm has a simple form,

wh T = max{0, w* — ax, Vf(w®)},

gradient descent

where the max is taken element-wise.
o “Do a gradient descent step, set negative values to 0.”

@ An obvious algorithm to try, and works as well as unconstrained gradient descent.
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A Broken “Projected-Gradient” Algorithms

@ Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin f(w).
weC

@ As another example, we often want w to be a probability,

argmin  f(w),
w>0, 1Tw=1
@ Based on our “set negative values to 0" intuition, we might consider this:

@ Perform an unconstrained gradient descent step.
@ Set negative values to 0 and divide by the sum.

@ This algorithms does NOT work.
e But it can be fixed if we use the projection onto the set in Step 2...
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Projected-Gradient

whte =k — apVf(wh), w* € argmin|jv — whts |-
velC

/

~
gradient step

projection step
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Projected-Gradient

whts =k — apVf(wh), w* € argmin|jv — whtz |-

~\~ veC
gradient step -

projection step

Feasible Set

Projected-Gradient Methods
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Summary

L1-regularization: feature selection as convex optimization.
Subgradients: generalize gradients for non-smooth convex functions.
Subgradient method: optimal but very-slow general non-smooth method.

Projected-gradient allows optimization with simple constraints.

Next time: going beyond L1-regularization to “structured sparsity”.
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Complexity of Minimizing Strongly-Convex Functions

@ For strongly-convex functions:

o Sub-gradient methods achieve optimal rate of O(1/e).
o If Vf is Lipschitz continuous, we've shown that gradient descent has O(log(1/¢)).

@ Nesterov's algorithms improves this from O(% log(1/¢)) to O(\/%log(l/e)).

o Corresponding to linear convergence rate with p = (1 — \/%)

ﬁf\/ﬁ>2

e This is close to the optimal dimension-independent rate of p = (ﬁ-h/ﬁ
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Newton's Method

Newton's method is a second-order strategy.
(also called IRLS for functions of the form f(Ax))

Modern form uses the update

k+1

7 = 2* — apd”,

where d* is a solution to the system

200 ky gk _ k
\Y f(SU )d - Vf(.T ) (Assumes V2 f(zF) > 0)
Equivalent to minimizing the quadratic approximation:

) =~ F&*) + Vi) Ty — o) + 2;k(y — )V2 () (g — ).

We can generalize the Armijo condition to
FE@) < f(@*) +yaVf(a*) T d".

Has a natural step length of a; = 1.

(always accepted when close to a minimizer)



Newton's Method

Ve

f(x)
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Ve

f(x)
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Newton's Method

x - of’(x)




Newton's Method

x - of’(x)
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Newton's Method

7

f(x)

X - of’(x)

xk - o H-1f’(x)

Projected-Gradient Methods
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Convergence Rate of Newton's Method

o If uI < V2f(x) < LI and V2f(x) is Lipschitz-continuous,
then close to * Newton's method has local superlinear convergence:

F@*h) = f(z*) < pilf () = F(a¥)),

with limy_, o pr. = 0.
o Converges very fast, use it if you can!
@ But Newton's method is expensive if dimension d is large:
o Requires solving V2 f(z*)d* = Vf(2").

@ "Cubic regularization” of Newton’s method gives global convergence rates.
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Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
o Diagonal approximation:
o Approximate Hessian by a diagonal matrix D (cheap to store/invert).
e A common choice is di; = V% f(z").
@ This sometimes helps, often doesn't.
e Limited-memory quasi-Newton approximation:
o Approximates Hessian by a diagonal plus low-rank approximation B*,

B* =D+ UV,

which supports fast multiplication/inversion.
@ Based on “quasi-Newton" equations which use differences in gradient values.

(VF(@*) - V@) =B (" —a"7).

@ A common choice is L-BFGS.
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Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
e Barzilai-Borwein approximation:

o Approximates Hessian by the identity matrix (as in gradient descent).
@ But chooses step-size based on least squares solution to quasi-Newton equations.

vV f(zF _
ak+1:fozk”v+|(‘2), where o* = Vf(z") — Vf(a* ).

o Works better than it deserves to (findMin.jl).
@ We don’t understand why it works so well.
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Practical Approximations to Newton's Method

@ Practical Newton-like methods (that can be applied to large-scale problems):
o Hessian-free Newton:

o Uses conjugate gradient to approximately solve Newton system.
@ Requires Hessian-vector products, but these cost same as gradient.
o If you're lazy, you can numerically approximate them using

Vf(@* +6d) - V(")
; .

o If f is analytic, can compute exactly by evaluating gradient with complex numbers.
(look up “complex-step derivative”)

V2 f(z*)d =

@ A related appraoch to the above is non-linear conjugate gradient.



Numerical Comparison with minFunc

Result after 25 evaluations of limited-memory solvers on 2D rosenbrock:

x1 = 0.0000, x2 = 0.0000 (starting point)
x1 = 1.0000, x2 = 1.0000 (optimal solution)

x1 = 0.3654, x2 = 0.1230 (minFunc with gradient descent)

x1 = 0.8756, x2 = 0.7661 (minFunc with Barzilai-Borwein)

x1 = 0.5840, x2 = 0.3169 (minFunc with Hessian-free Newton)

x1 = 0.7478, x2 = 0.5559 (minFunc with preconditioned Hessian-free Newton)
x1 = 1.0010, x2 = 1.0020 (minFunc with non-linear conjugate gradient)

x1 = 1.0000, x2 = 1.0000 (minFunc with limited-memory BFGS - default)

Projected-Gradient Methods
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Superlinear Convergence in Practice?

@ You get local superlinear convergence if:

o Gradient is Lipschitz-continuous and f is strongly-convex.
o Function is in C? and Hessian is Lipschitz continuous.
e Oracle is second-order and method asymptotically uses Newton's direction.

@ But the practical Newton-like methods don’t achieve this:

e Diagonal scaling, Barzilai-Borwein, and L-BFGS don't converge to Newton.
o Hessian-free uses conjugate gradient which isn't superlinear in high-dimensions.

o Full quasi-Newton methods achieve this, but require 2(d?) memory/time.
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L1-Regularization vs. L2-Regularization
@ Another view on sparsity of L2- vs. L1-regularization using our constraint trick:

argmin f(w) + Mwll, << argmin f(w) + AT with 7 > |Jw||,.
weRd wER?, 7ER

-.. | @Unconstrained Solution "‘-__ - ... | @Unconstrained Solution
] ©L2-Regularized Solution .| |, b 3 <] © L1-Regularized Solution |,

@ Notice that L2-regularization has a rotataional invariance.
e This actually makes it more sensitive to irrelevant features.
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Does Smoothing Help?

@ Nesterov's smoothing paper gives a way to take a non-smooth convex f and
number ¢, then it constructs a new function f. such that

f(w) < fe(w) < f(w) + ¢,

so that minimizing f.(w) gets us within € of the optimal solution.
o And further that f.(w) is differentiable with L = O(1/e).

o If we apply gradient descent to the smooth function, we get

t=O(LJe) = 0O(1/) ,
—— ———

smoothed problem original problem

for convex functions (same speed as subgradient).
@ For strongly-convex functions we get

t = O(Llog(1/€)) = O((1/€)log(1/e)),

which is actually worse than the best subgradient methods by a log factor.
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Does Smoothing Help?

@ Nesterov's smoothing paper gives a way to take a non-smooth convex f and
number ¢, then it constructs a new function f. such that

f(w) < fe(w) < f(w) + ¢,

so that minimizing fe(w) gets us within € of the optimal solution.
o And further that f.(w) is differentiable with L = O(1/e).

o If we apply accelerated gradient descent to the smooth function, we get

t = O(v/L/e) = O(1/e),
which is faster than subgradient methods.

(same speed as unaccelerated gradient descent)
@ For strongly-convex functions the accelerated method gets

t = O(VLlog(1/€)) = O((1/v/€) log(1/e)),

which is faster than subgradient methods (but not linear converence).



Projected-Gradient Methods

What is the best subgradient?
@ We considered the deterministic subgradient method,

t+1

ot =2t — ayg;, where g; € Of(21),

under any choice of subgradient.

@ But what is the “best” subgradient to use?

e Convex functions have directional derivatives everywhere.
e Direction —g; that minimizes directional derivative is minimum-norm subgradient,

g' = argmin ||g||
gedf(xt)

This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Used in best deterministic L1-regularization methods, combined with Newton.
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