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CONSTRAINED MINIMIZATION METHODS*

E.8. LEVITIN and B.T. POLYAK

Moscow

(Received 24 September 18965)

Introduction

CONSTRAINED extremum problems form a wide class of problems often
encountered in pure and applied mathematics. We only need to recall
examples such as linear and non-linear programming, the Lagrange problem
in the calculus of variations, optimal control problems, problems of best
approximation and variational problems for partial differential equa-
tions. Each of these types was at one time considered in isolation. To-
day, a general mathematical theory of extremal problems is being created
on the basis of functional analysis. For instance, the scheme proposed
by A.Ya. Dubovitskii and A.A. Milyutin (1] enables the necessary condi-
tions for a minimum to be obtained in a unified way for all such prob-
lems, starting with the duality theorem in linear programming and ending
with the Pontryagin maximum principle for optimal control. Very general
results have also been obtained regarding the existence and uniqueness
of the extremum.

In the present paper we consider another aspect of extremal problems,
namely methods of solving them, from the same unified functional-analytic
viewpoint. The methods are classified and theorems proved for certain of
them. These general theorems are illustrated by some specific examples.

Using this approach we are naturally prevented from considering many
familiar methods which in essence use some specific feature of the
particular problem (e.g. methods of dynamic programming). This paper
consequently makes no pretence at offering a survey of numerical methods
of minimization. Our aim is to give as general a statement as possible

* Zh. vychisl. Mat. mat. Fiz. 6, 5, 787 - 823, 1966.
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2 E.S. Levitin and B.T. Polyak

of certain methods which are in part familiar in computational practice,
and to state precisely the conditions for their convergence. We pay
hardly any attention to another important aspect of the problem, namely
the computational side. But it seems to us that our purely theoretical
results on the convergence of methods do in fact throw light on this
aspect. Some discussion of this topic will be found in Section 12.

1. Notes on the mathematical theory of extremal
problems

We devote this section to the mathematical theory that will be
utilized below. A familiarity with the general ideas of functional
analysis [2, 3] is assumed.

All functionals and sets are considered below in a real Banach space
g,

As usual, we call the functional f(x) convex on J if f{(x + ¥}/ <<
% f(x) + % f(y) for all x, y = Q (or strictly convex if the inequality
is strict). Throughout, we shall only consider continuous convex func-
tionals. Hence the convexity condition can also be written as f(ox +
(1 - yY)<<af(x) + (1 - Of(y), 0<<a<<1. Similarly, the set Q is
called convex if z = § for all x, y & ), where z = ¥(x + y), and
strictly convex if z is an interior point of 3. The linear functional
¢ & E* i3 called a support functional to f(x) at the point x if
flx ¥+ y)= f(x) + (c, y) for all y e= E, and a support functional to 0
at the point x if (¢, x) < {c, y) for all y = Q. If the zero linear
functional is a support to f(x) at the point x*, then x* is a minimum of
f(x) on E, Here and below, £* is the conjugate space and (c, x) is the
value of the linear functional ¢ & E* on the element x = E (in particu-
lar, the scalar product in Hilbert space). A convex functional f(x) has
a support functional at any point x. This support functional is unique
and is the same as the gradient f'(x) if f(x) is differentiable (the
Fréchet derivative is always understood). With f(x) differentiable, the
convexity condition is equivalent to (f'(x) - f'{y), x ~ y) =0 for any
x and y. If the convex functional has a second derivative f'(x), then
f(x)y, y) 220 for all x and y. Finally, a convex functional is weakly
semicontinuous from below.

Most results concerning the existence of an extremum can be obtained
from the following.
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Theorem 1.1

A functional weakly semicontinuous from below has a minimum on a
weakly compact set.

In particular, it follows from this that
Theorem 1.2

A convex functional f(x) has a minimum on any bounded closed convex
set Q of reflexive space E.

We quote an elementary theorem on the uniqueness of the minimum.

Theorem 1.3

If, in addition to the conditions of Theorem 1.2, f(x) 1is strictly
convex, or if ) is strictly convex, while f(x) has no zero support
functionals on O, then its minimum is unique.

We now turn to the convergence of minimizing sequences. Since the
successive approximations in many minimization methods do not in general
satisfy constraints, it is worth introducing the following:

Definition (4]. we call x" = E, n=1, 2, ..., a generalized minimiz-
ing sequence (G¥S) for f(x) on Q 1if

a) limf(z")=f*" = inf f(x), b) limp(z*, Q)= lim inf [l2» — z|| = 0.

n->o0 £E=Q n—»>o00 xSQ

Theorem 1.4

In the circumstances of Theorem 1.2, we can extract from any G¥S a
subsequence weakly convergent to the minimum. In the circumstances of
Theorem 1.3, any GMS is weakly convergent to the (unique) minimum.

We shall be interested in cases where strong, as well as weak, con-
vergence of the GYS can be proved. For this, we introduce the following
definition [4, 5]. The functional f(x) is called uniformly convex if
there exists a function 5(t), &5(r) > 0 for v > 0 (which can be assumed
monotonic), such that f((x + y)/2) < %(f(x) + f(y)) - 5|l x - y||) for
all x, y. This condition is equivalent to the following: for any x = £
there exists a support functional ¢ & E* such that f(x + y) = f(x) +
(c, ) *+ 5(l|y ”) for any y. Further, we call a set Q uniformly convex
if there exists a function 5(t), 5(r) > 0 for v > 0, such that
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(x+y)/2+zeQforanyx, ye Qand any z: ||z [[<sdlx-yD.
Finally, we call a uniformly convex functional (set) strongly convex if
§(1) = yr?, y > 0. Such functionals and sets have the following proper-
ties. A uniformly convex function f(x) is bounded from below in E, while
the set S = {x: f(x)<C A} is bounded for all A. If, in addition, f(x)
satisfies a Lipschitz condition on S, then S is uniformly convex. Every
uniformly convex set different from £ is bounded. In finite-dimensional
space every bounded strictly convex set is uniformly convex, while every
strictly convex functional is also uniformly convex on any bounded set.
If f(x) is differentiable, the uniform convexity condition is equivalent
to (F'&) - f (), 2 -y =6(lx-yll). 1f fx) is twice differenti-
able, the condition for strong convexity is equivalent to f"(x)y, y) =
vy ll2, ¥y >0, for all x, y.

Theorem 1.5

I1f ) is a closed convex set, and f(x) a uniformlv convex functional,
then every GYS is (strongly) convergent to the (unique) minimum x* of
F(x) on Q. Here f(x) - f(x*)=5(|| x - x* ||y for a1l x = 0.

Theorem 1.6

If Q is a closed uniformly convex set, and f(x) a functional weakly
semicontinuous from below, with a unique minimum at the boundary point
x* on /), then every GMS is (strongly) convergent to x*. In particular,
if f(x) 1s a convex functional, having no zerc support functionals on Q,
then f(x) - f(x*)=A5(llx - x* ), A >0, for all x = Q.

As we shall see below, only a slight strengthening of the conditions
of Theorems 1.4 - 1.6 is required for convergence of many minimization
methods.

In many problems the admissible set Q is specified by Q = {x: g(x)< 0},
where g(x) is a& functional. In conmection with the concept of GYS, it
is important to know when the condition g(x") — + 0 implies p(x™, Q)~ 0.
We call the constraint g(x)<< 0 correct if this is true. It turns out
that g(x)<< 0 is correct in the following cases: (a) if £ is finite-
dimensional, g(x) is continuous and S = {x: g(x)<{ e} is bounded for some
e > 0; (b) 1f g(x) is convex, Q is bounded and there exists x? such that
g(x9 > 0; (c) if g(x) 1is convex and [ g’ (x) l|>¢ > 0 for all x such
that g(x) = 0 (here g'(x) denotes any support functional to z(x) at the
point x; (d) if g(x) is differentiable, Q bounded, g’(x) satisfies a
Lipschitz condition, and there exist e > 0, & > 0 such that || g'(x) [|>¢
for |g(x)|<<5; (e) 1f g(x) =0 for all x (l.e. O = {x: g(x) = O}), g(x)
is differentiable, g'(x) satisfies a Lipschitz condition, and
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|l g"x) [12=Ag(x), A > 0; (£) if g(x) is uniformly convex.

Notice that, if the initial problem is such that the GV S convergence
cannot be said to be strong, yet at the same time good convergence to
the solution is desirable in the sense of closeness in norm as well as
with respect to the functional, the artificial device of A.N. Tikhonov
regularization can be used to obtain a strongly convergent sequence [6,4].

In conclusion we dwell briefly on the necessary and sufficient condi-
tions for an extremum. In the case of unconstrained problems, such con-
ditions have been well known ever since the foundations of analysis and
the calculus of variations were laid. They were later extended to the
case of constraints in the form of equations (the method of Lagrange
multipliers). But it is only recently that the necessary conditions for
an extremum have been stated for problems of mathematical programming
(the Kuhn - Tucker Theorem, [7]) and for optimal control problems
(Pontryagin’s maximum principle, see [8]). The necessary condition for
a minimum was obtained by L.V. Kantorovich [9] in 1940 for the general
problem of minimizing a functional on a set of Banach space. Recently,
A.Ya. Dubovitskii and A.A. Milyutin [1] have developed a unified technique
for obtaining the extremum conditions for a very wide variety of prob-
lenms.

We shall use the conditions for a minimum of the functional f(x) on a
convex set () of Banach space £ in the following form (x* is the minimum
throughout what follows):

(a) if f(x) is differentiable, then

(f(z*),z—=2") =0 for all z& (Q, (1.1)

i.e. f'(x*) is a support functional to Q at x*;

(b) 1if f(x) is differentiable and £ Hilbert space, then

allf(z*) | =min || 2" — af’(z*) —z | for all « >0,
xe=Q

(1.2)

i.e. the projection of the vector x* — «f'(x*) on Q is the same as x*;
(c) if f(x) is convex and twice differentiable, then

("), z—2") +h(f(=") (z—2"),2—2") =0, (1.3)

or
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min{f(z*) +(f (z*), 2 — 2°) + /o (" (z*) (z — 2°), 2 —2 ") ] = f ().

*=Q

We shall see below that the method of gradient projection (Section §)

can be regarded as an iterational means of satisfying condition (1.2),
the conditional gradient method (Section 6) a means of satisfying con-
dition (1.1), and Newton’s method (Section 7) condition (1.3).

2. Examples of extremal problems

General minimization methods will be illustrated throughout this paper
by examples, mainly from optimal control problems. We describe these
problems in the present section and indicate conditions ensuring the
functional and set properties participating in the general theorems
(smoothness, convexity, uniform convexity etc.).

1. The problem of mathematical programming amounts to minimizing a
function f(x) of m variables, x = (x;, ..., x,) on a set Q specified by
the constraints g;(x)<C0, ¢ =1, ..., r. We shall often reduce differ-
ent problems to a sequence of problems of linear (f(x), g;(x) linear) or
quadratic (f(x) quadratic, g;(x) linear) programming, for which the final
methods of solution are well known [7, 10].

2. The optimal control problem (8] amounts to minimizing the func-
tional

fwy= P, u@),tdt+0@(1)), (24)

0
where the phase variables x(t) and control u(t) are connected by
dz
— =0, (0)=e (2.2)

in the presence of certain constraints. We shall only consider problems
in which the time T and the initial state x(0) are fixed. We assume that
x(t) = (x3(t), ..., x,(t)), ult) = (uy(t), ..., ur(t)), r< m. The solu-
tion will be sought in the class of functions u(t) € Lzrco, T, i.e.

It = ( { huo) ihae) = ( [ Sucwa )"

=1
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This class of functions is fairly wide (in particular, it includes all
bounded measurable u(t)); on the other hand, the space L," is Hilbert,
which is extremely handy for various methods of minimization. The nota-
tion f(u) (and not f(x, u)) in (2.1) emphasizes that u(t) is regarded
as the independent variable, while x(t) is found (for the given u(t)) as
a solution of (2.2).

We note some important particular cases of the functional f(u):
(a) F = 0 is the problem of terminal state optimization (e.g. D(x(T)) =

lz(T) —4dll,, (b) ® =0, F(x, u, t) = F(x, t) is the problem of best
approximation of a given trajectory (e.g. F(x, t) = lz(¢) —a(?) Iz, )

(c) =0, F(x, u, t) = ¥(u, t) is the problem of control power minimiz-
ation (e.g. F(u,t) = [lu@@)ll %r).

An important particular case of system (2.2) is the linear problem in
which (2.2) becomes

%:A(t)z+B(t)u, z(0)=c, (2.3)

where A(t), B(t) are m x m and mn x r matrices, continuously dependent
on t.

In the particular case when A(t) = 0, B(t) = I (I is the unit matrix),
we obtain the classical functional of the calculus of variations.

We shall not quote the proofs of the following properties of the
functional f(u), since they are quite laborious and of little interest.

a. Let ¢(x, u, t) satisfy a Lipschitz condition in x and u for all
x, u, t (i.e. for instance, | (zi, u,t) — @ (22, 1, 1)l £, < Kllzy — 22/l &,
where K is independent of u and t; other conditions of this type will be
understood similarly). Let 9(x) and F(x, u, t) satisfy a Lipschitz con-
dition in x on any set bounded in x and let |F(x, u+ u, t) — F(z, u,

t)| < Mllullg, Nzl g, + Rzl %, (implying that F(x, u, t) satisfies a

Lipschitz condition in u on any set bounded in u and that F(x, u, t) as
a function of u is increasing not faster than quadratically). Then f(u)
is a continuous functional, satisfying a Lipschitz condition on any
bounded set.

b. Let ¢(x, u, t) have partial derivatives with respect to x and u,
satisfying a Lipschitz condition and bounded for all x, u, t, while
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F(x, u, t) has partial derivatives with respect to x and u satisfying a
Lipschitz condition on any set bounded in x. Pinally, let ®(x) be differ-
entiable and its gradient satisfy a Lipschitz condition on any set
bounded in x. Then f(u) is differentiable, its gradient satisfies a
Lipschitz condition everywhere, and has the form

f(u) =h(t) = Fu— @u", (2.4)

where y(t) is the solution of the system

%1:’: — e+ Fe, BT =— @ (2(T))

(here, as throughout what follows, the subscript denotes differentiation
with respect to the corresponding argument, and the asterisk the con-
jugate operator, in this case the transposed matrix).

Notice that the necessary condition f’'(u) = 0 for a minimum in the
unconstrained problem is none other than the classical Euler - Lagrange
equation for this problem in the integral form. Notice also that f'(u)
is connected with the function Y(x, u, t, y) of Pontryagin (8] by the
simple relationship h(t) = - /i

All further properties of f(u) are quoted for a linear system (2.3)
only. Unfortunately, we know of no extension of them to a non-linear
system.

¢. If F(x, u, t) is continuous with respect to {x, u}, measurable
with respect to t, convex with respect to u, while ¢(x) is continuous,
then f(u) is weakly (and hence strongly) semicontinuous from below.

d. If F(x, u, t) is convex with respect to {x, u}, and 9®(x) convex,
f(u) must also be convex.

e. If, in addition to property d, F(x, u, t) is uniformly (strongly)
convex with respect to u (more precisely, if F((x; + x3)/2, (uj + uy)/2,
t) << YoF (x4, w, t) + YoF (2, 2, 1) — 6(llug — uell) for any x,, x5, u,,

uy, t, then f(u) is a uniformly (strongly) convex functional.

Properties d and e can be substantially improved [5], Theorem 10,
where this is done for the elementary variational problem).

f. If F(x, u, t) is twice continuous differentiable with respect to
{x, u}, and 9(x) twice differentiable, then f(u) is twice differentiable
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and its second derivative f"(u) is
r (2.5)
(W& By = §[(FuF, £)+ 2(Fuu, B)+ (Fuud, B)]dt +("E(T), E(T)),

]

where dx /dt = AX + Bu, z(0) = 0.

g. In connection with theorems 1.3, 1.4, 1.8, it is important to know
in what cases f'(u) = 0. We call system (2.3) non-degenerate if B*y == 0
in any interval from [0, T] tor any non-zero solution of the system
dg/dt = ~ A*y. This condition means, in particular, that any point x(T)
can be reached from the initial point x(0) = 0. Let the system be non-
degenerate and any of the following conditions be satisfied (for all
admissible u): () F=0,DP 5=0; (v) O =0, F, %= 0 on any interval
F,=0,8)®0=0,F,=0,F,%0 on any interval. Then f'(u) # 0 for

all admissible u.

We now consider the various types of constraint encountered in optimal
control problems:

(1) Q= {u:u(t) =M, for almost all 0=<Ct<<T}; ¥, is a set of
E,.. For example, Qy = {u:a;(t) < ui(t) << bi(¥)};

T

(2) Qz={u: S G(u(t),t)dtgx}; the case G{u,t)=
0

or G(u,t) = (Ru(t), u(t))e,, is often encountered, where R is a posi-
tive definite matrix;

(3) Qs={u:z(t) =S; for all 0t << T}, St < En; particular
cases of this constraint are z(T) =d and ¢q(x(t)) <'0 for all
0<Lt<CT, q(x) is a function of m variables.

Constraints of a rather more general kind are also possible (for

T
instance, S G(z,u,t)dt < a or {r,u} = N; for all 0t << T,
9
Ni < Epyr). We shall not consider them, since it would add to the com-

plexity of the analysis without introducing anything new.

We quote the properties of the sets Q; - Q,.
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a. If Y, is convex for all t, then Q, is convex. If G(u, t) is convex
with respect to u for all ¢, then (), is convex. If S, is convex for all
t, and the system linear, then Q4 is convex.

b. If ¥, is closed for almost all ¢, then Q; is closed. If G(u, t) is
continuous with respect to u and |G(u,t)| = aliuliE‘zr -+ B for all t,

then Q, is closed. If S; is closed for all t, and the system linear,
then Q; is closed,

c. If ¥, is uniformly bounded in £,, then 9, is bounded. I1£fG(u,t) >
vlu | for large llullz, and all ¢, then Q, is bounded.

d. If M;s= E,, then (), is certainly not uniformly convex (and does
not even contain interior points). If G(u, t) is uniformly (strongly)
convex with respect to u for all t (with a function 5(r) independent of
t), then Q, is uniformly (strongly) convex.

e. The set Q; can be specified by means of the functional Q; =
{u:g(u) < 0}. We prove this in three particular cases. Let ' = {u:
qi(z(t)) < O for all 0<C i<CT}. We can now take g;(u) =max q:(z(7)).

—o<t<
If Q" = {u:q:(z(T)) <0}, we can take go(u) = 22(z(T)). Finally
if Q" = {u:z(T) =d}, then gy(u) = [lz(T) —dli} .

We give the conditions under which the constraints g;(u)<C0, i = 1,
2, 3, are correct. Let system (2.3) be non-degenerate. Then g;(u) is a
correct constraint, while g;(u), g,(u) are correct provided the q;(x)

are convex and 0 << e < ll¢g/ll <<c¢ for ¢; =0, i =1, 2, and in addi-
tion g¢i(z(0)) < 0. In particular, the linear conditions (a(Z),
z(1))E <A(), 0t <<T, and (a, z(T)) << A lead to correct con-
straints.

3. In addition to finite-dimensional and optimal control problems,
there is a vast number of extremal problems connected with partial
differential equations. We shall not discuss these, since they cannot be
stated in as general a way as problems with ordinary differential equa-
tions. The methods considered below can nevertheless be readily applied
to many concrete problems of this kind (in particular, to those dis-
cussed in [11, 44].
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3. Classification of the methods

In the general form our problem is to minimize a real function f(x)
on some set 0 of real Banach space E. Most of the methods for solving
this problem seem to fall readily into the following groups.

1. Methods of feasible directions

In these methods we obtain a minimizing sequence of points x9, ...,
x", ..., all of which belong to . The functional and constraints are
approximated at each point, and the new point obtained by solving an
auxiliary problem. This group includes the gradient projection, condi-
tional gradient and Newton methods discussed in Section 5 - 7. There are
other methods of this type, which are described for the particular case
of mathematical programming in [7].

2. Methods of set approximation

In these the set 0 is approximated by a sequence of sets Q,, for each
of which the problem of minimizing f(x) on Q, is solved. Generally speak-
ing, it is not essential for Q, — Q. Examples are the Ritz and cut-off
etc. methods, discussed in Sections 8 - 10.

3. Methods of penalty functions

These methods amount in essence to reducing the constrained to an
unconstrained extremal problem, by imposing a *penalty" on the initial
functional for infringing the constraints. These methods are dealt with
in Section 11.

4., Duality methods

We include in this group the methods in which an iterative process is
found for selecting the linear functionals (*dual* variables), figuring
in the necessary conditions for an extremum. We shall omit these methods
here, since it has not yet proved possible to state them in a general
enough form. Several methods of this type are described, as applied to
finite-dimensional problems, in [12 - 14].

This classification is not conventional and naturally has defects. In
particular, some of the methods used for concrete problems need stretch-
ing to fit into one particular category. Also, a method can sometimes be
classified differently according to the point of view.

Other criteria can be used for classification. For instance, we can
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group methods according to the highest order of functional derivative
employed; e.g. the gradient nrojection method is of the first order and
Newton’ s of the second. Further, we can call a method k-step if k
previous iterations are used to obtain the next. Most of the methods dis-
cussed here are one-step (Sections 4 - 7) or null-step (methods of
penalty functions (Section 11) or Ritz methods (Section 9), while in the
cut-off method all the previous iterations are used to obtain the next.
We can also classify methods as stationary or non-stationary, according
to whether the method of obtaining the n-th iteration depends on n or
not. Finally, we only consider discrete methods (i.e. those in which an
iterational sequence x" is formed), though many have continuous analogues
(i.e, we obtain a trajectory x(t), described by a differential equation),
The point is that, for the numerical realization of continuous methods,
we find ourselves using finite-difference methods to solve the differ-
ential equations, i.e. in essence we move over to a discrete method. How-
ever, continuous methods can be used e.g. for solving problems on
analogue computers.

4. Methods of finding an unconstrained extremum

It seems worth discussing the case of an unconstrained extremum sepa-
rately, since, firstly, rather more precise theorems can be proved here,
and secondly, it is worth stating explicitly the methods whose analogues
are used below for finding constrained extrema.

We shall only be concerned with one-step discrete methods, i.e. those
in which an iterational sequence of the type

ZhH == g — gnPr(2™),  an =0, (4.1)
is coanstructed.

We start with methods of the gradient type. We mean by this phrase
that the direction of motion P,(x") 1is in some sense close to the
gradient (see conditions (4.3), (4.4) in Theorem 4.1). Theorems 4.1 -
4.2 are an extension of the results of [15), where a gradient method in
the strict sense of the word was investigated in Hilbert, space, i.e.

v = " e g f (27, an = 0. (4.2)

In finite-dimensional space the idea of this method goes back as far as
Cauchy.

We shall not give the proofs here, since they follow the same lines
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as in [15].
Theorem 4.1

Let f(x) be bounded from below on E: inff(x) =f" >> —oo, and
xsE
differentiable, with f'(x) satisfying a Lipschitz condition with con-
stant ¥, and let

1Pn(z) |l << Kullf (2) 1, (4.3)
(f (z),Pr(z)) = Kalif ()12, K2>0, (4.4)
2K,

0<e<um<,-—e >0 (4.5)

1

for all n. Then, whatever the x0 in the method (4.1), we have f(znt!) <C
[(z"), lim f'(z7) = 0. If, in addition, f(x) is convex and {z: f(r) <
n—»00

f(«°)} bounded, then lim f(z") = f".

n—>00

In particular, if E is a Hilbert space and P,(x) = f'(x), then con-
ditions (4.3), (4.4) are satisfied for Kl = K2 = 1, so that Theorem 4.1
gives the convergence conditions for the gradient method (4.2).

To ensure the existence of & minimum and convergence of the sequence
x", extra restrictions must be imposed on f(x).

Theorem 4.2

In addition to the conditions of Theorem 4.1, let

I (zy 112 = Alf(z) — '], A >0. (4.6)

Then the sequence (4.1) is convergent to the minimum at the rate of a
geometric progression.

The conditions of the theorem only need to be satisfied in a neighbour-
hood of x*. Notice also that condition (4.6) does not demand the con-
vexity of f(x) and does not guarantee uniqueness of the minimum. In
essence, it merely means that, if the gradient is small at some point,
then f(x) is close to its minimum at this point. This condition cannot
be extended to the case of a constrained extremum.

If we replace (4.8) by the stricter condition for strong convexity
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and confine ourselves to method (4.2), & better estimate of the con-
vergence rate can be obtained.

Theorem 4.3

Let £ be a Hilbert space, and f(x) twice differentiable, where, for
ell x, y,

m(y,y) < ({"(@)y, y) <My, y), m>0 (4.7

Then, with a, =0, 0 < o <<2/M in method (4.2) llz" —2*]| <<
l2° — z*|lg", ¢ = max {|1 —aM|, |1 —am]|}, q is minimal and equal to
M—m)/{(M+m) for a =2](M+ m).

As above, the conditions of the theorem only need to be satisfied in
8 neighbourhood of x*.

The gradient method is often suitable in problems where at first sight
there appear to be restrictive equations. Let E,, E,, E; be Hilbert
spaces,x = E,, y & E,; our problem amounts to minimizing f(x, y) on
condition that P(x, y) = 0, P is an operator from E; x E, into £;. We
shall assume that, given any fixed x, the equation P(x, y) = 0 has a
unique solution y(x). Now, instead of solving the initial conditioned
extremum problem, we can seek the unconstrained minimum of the function
®(x) = f(x, y(x)). There is no need at all to find the function y(x) ex-
plicitly here. In fact, the gradient of the functional 0(x) is ®'(x) =
fe — [Py/]'Px. Hence, the gradient method has the form

(4.8)

ZrH = g% — a,[f= (2", y") — (P (2", y")) Pe(z™, y™)], y"H = y(z™").

In other words, we only need to be able to find y(x"*1). This approach
is well known, see e.g. [16]. In essence, we use it when, in the optimal
control problem (1.1), (1.2) we take only the one independent variable
u(t), instead of the two x(t), u(t) connected by equation (1.2).

Another important class of minimization methods includes those of
Newton’ s type. Newton’ s method for minimizing f(x) is

gt = zn — [ (z") 7 (27). (4.9)

This method can be interpreted in two ways. Firstly, as the Newton’s
method for solving the equation f'(x) = 0. Hence all the conditions for
convergence of method (4.9) (in particular, Theorem 4.4) can be obtained
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from the familiar [2, 17] convergence conditions for Newton’s method for
solving equations. Secondly, if we approximate f(x) by a quadratic func-
tional at the point x" f(z") 4 (f'(z"), z —2™) + Y2(f'(2™) (z — 2™),

z —z"), its minimum point will be the same as x"*1 in (4.9). We shall
use this interpretation when extending Newton’ s method to the case of
constrained problems.

Theorem 4.4
|
Let condition (4.7) be satisfied, and in addition, let f"(x) satisfy
a Lipschitz condition with constant R. Then the sequence x" in method
(4.9) is convergent to the minimum x* at the rate

, . m o« . 2R
lo» — 2l < 57 3 6", where 8= —llat — 2]

h=n

(assuming that 5§ < 1).

There are methods intermediate between the gradient and Newton’s
methods, when part of the dependences are approximated linearly, and
part quadratically. For instance, when minimizing @(P(x)), where x = E,
is a non-linear operator from E, to E,, ¢(y) is a functional in E,, we
can approximate ¢(y) quadratically, and P(x) linearly. We then obtain
the method [18]

(4.10)
= gn — [P (27)@" (P(z")) P’ (z™) ] 'P"* (=) ¢ (P (z7)).

In the above problem of minimizing f(x, y) under the condition P(x,y) =0,
we can linearize P(x, y) and approximate f(x, y) quadratically. We then
get the method

(4.11)

37"'“ =z" - [fxx +fw (Pu_ipx) .Py_ipx - fstypu_ipi’t]_i (fyPy—ifx + fx)
But the convergence conditions for (4.11) are unknown.

We now illustrate the concrete form of the above methods for differ-
ent examples. The convergence conditions .for each follow from the above
theorems and the properties of functionals given in Section 2.

1. When minimizing the finite-dimensional function f(x)=f(x,,...,xp)
the gradient method (4.2) becomes

a n
zin+1= -'t{" —an fa(: )
1

(4.12)

. i=1,...,m.
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The more general methods

iw, i=1,_,,,m, (4"13)
6xi

n-1
Iy =Z"—an

can be regarded as realizations of method (4.1). In Newton’s method
(4.9), f"(x™) is the matrix of second derivatives; at each step of this
method, therefore, we have to find this matrix and solve a system of
linear algebraic equations.

2. In the case of the optimal control problem (2.1), (2.2), the
gradient method (4.2) becomes, in accordance with the expression (2.4)
for the gradient

unt (1) = u(¢) — an [Fu — @u™Y),
d . , (4.14)
e —y P WD) =0 @D),
where all the quantities occurring here are evaluated on the trajectory
corresponding to u"(t).

A more general method of the type (4.1) is obtained if the constants
a, z= 0 are replaced by the functions o,(t) =0 in (4.14).

The method (4.14) seems to have been first applied by Stein [19] to
the elementary variational problem; see also [15]. 1t was proposed for
the general optimal control problem in [20 - 23]. Elementary theorems on
convergence of this method are 6nly to be found in [23]. It follows from
Theorem 4.1 of the present paper that, if the conditions given in Section
2 are satisfied, in which the gradient of f(u) exists and satisfies a
Lipschitz condition, while F{x, u, 1) == M and @(z) = ), then we
have f(u™*') << f(u") and f'(u") — 0. in method (4.14). Theorem 4.3 can

be applied for the linear problem (2.1), (2.3), and a result obtained on
the convergence of u® to the solution.

We now consider Newton’s method for the linear problem (2.1), (2.3).
In accordance with expression (2.5) for f“(u), at each step of Newton's
method we have to minimize the quadratic functional

1@ = § [ Fe ) (Fu D)+ g (P ) (B, D)+
‘ (4.15)

o (Funh ) | di o+ (@, 5(1) + - (@5 (D), 2(T)),
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where dx /dt = Az 4 B, T (0) = 0.
Accordingly, Newton’s method becomes
utt (1) = u(t) + Fuu™ (Fy — 2F,T — B*Y), (4.16)

where x(t), y(t) is the solution of the linear boundary-value problem

‘;_’: — AF — BF yy~ (Fu — 2F 1T — B'Y),
dy . = — e
(’i?——'-— —4 \p+Fx+mex +quFuu_1(Fu_2qux —B VP),

F0)=0, (T)=—0"z(T).

Finally, the mixed method (4.11) for problem (1.1), (1.2) has the
same form as (4.16), if 4 and B in (4.16) are replaced by ¢, and ¢,
respectively.

Newton’ s method was proposed for the elementary variational problem
in [19]; we are not aware of any previous application of it in the
literature to the optimal control problem (method (4. 18)).

5. Gradient projection method
We turn to methods for solving constrained problems.

The gradient projection method, for minimizing the differentiable

functional f(x) on a set Q of Hilbert space E, amounts to forming the
sequence

21 = Po (2" — anf (z7)), (5.1)

where Py is the operator of projection on to Q (in other words, y =Pg(x)

is given by y = Q, lly —zll = inf |z —zl). I£Q = E (i.e. we have the
ZeQ

unconstrained problem), method (5.1) is the same as the gradient method

(4.2). A curious point is that the more general method (4.1) does not

similarly extend to constrained problems. The necessary condition (1.2)

for a minimum is satisfied at a stationary point of method (5.1).

A general theorem on the convergence of this method is
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Theorem 5.1

Let () be a bounded closed convex set of Hilbert space 7, f(x) a
functional differentiable on (), where f'f/v) satisfies a Lipschitz condi-
tion with constant ¥, and 0 < & << on << 2/ (M + 285), &2 > 0. Then

sequence (5.1) has the following properties:

(1) f(xn) is monotonically decreasing and lim [[znH — 20| = 0;
n—00

(2) if f(x) is convex, then
hm f(z?) = f* = inf f{z),
n—>00 =g

where f(z?) — f* << ¢/n, and a subsequence of x" exists, weakly con-
vergent to the minimum x*;

(3) if f(x) is strictly convex or (} is strictly convex, while
f'(x) # 0 on J, then x" is weakly convergent to the (unique) minimum x*;

{4) if f(x) is uniformly convex or (} is uniformly convex, while
f'(x) # 0 on Q, then x™ is strongly convergent to x*;

(5) if f(x) is twice differentiable, where milyl* < (f'(2)y,y) <
Miyl2, m>0 for all x & 0 and all y, then, with o, = a, 0 < a <
2/#, sequence (5.1) is convergent to x* at the rate of a geometric pro-

gression: {| z» — 2" || << C(2%¢) (g + &)”, where ¢ = max {|1 — am|,
|1 —adt]}, 0<<g'<<1, e>0 is arbitrary. ¢ is minimal and emal to
(M—m) | (M+m) for a=2/{(M+m).

Proof. We notice first that, siace 7 is convex and closed, the oper-
ator PQ(x) is uniquely defined for all x. Further,

i

fam) = f@m)=(F (z), e —am)+ § (F (@ +v(amtt — ) —

°
1
— f’(z"), znH mxn)dt < (f'(-’l:"‘), -+ —Z") + S ||f/(.7:'” e T(znﬂ —z"))—
o
— (@) llla™+ — arllde < (f (), 2+ — 2m) + %’-uxﬂ*ﬂ —anf =

—_ _i. 7 an! ry— xn%—i’ Yy — _iﬁxn+i — 712 +
a { ) G
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M . .
M ne —znpp < — 143 antt — vl < — elien — 7l < 0

<

(Here, we have used the fact that (z — Pq(z), ¥y — Po(z)) << 0 for all

y € Q. Thus f(x") is monotonically decreasing. Since the boundedness of
Q and the Lipschitz condition on f’(x) imply that f(x) is bounded from

below on Q, Wwe have limf(z") exists, so that [| 2"t —zn |2 << [f(2") —

f(zt)] [ e2—> 0 as 7 oo

Further, if f(x) is convex, a minimum x* must exist, f(x*) = f*. Since
f(x) is convex,

0 f(am) — " < (F/(am), 2n - 2°) = (F'(am), 2" — 2™H) +

1 1
(2" — anf (a7) — M, 2 — amH) — — (2 — a7, 2 — 2 <
n n

1
<lf (z") Mizntt — zn i+ —llznH — zn|lz” — 2n | <<
Qn

< (17 @)1+ et — ansil ) lanst — o).
Since the expression in brackets is bounded, and [l z"+ — zn|| >0 by
what has been proved, we have f(a2m) — f* as n-— oo. We now consider
the rate of convergence. Let ¢, = f(x") - f*. From the last inequality,
Prn < Allz? — 27+ |, while we found above that @n — Qnyt = el 2™ —
znt ]2, Hence @n — Quit == pPn’. We consider the numerical sequence
Pn+1 = Pn - pPp%. If py is small, we know (24] that pp<<c/n. But, if
Pp<<pp, and ¢, is small, then @upi1 << OPn — 0¢n? << pnyy. Since, by
what has been proved, }j_g% = 0, then @, << pn << ¢/ n for all reason-

ably large n. The last part of the second assertion of the theorem, and
also assertions 3 and 4, follow from Theorems 1.4 - 1.6,

Finally

nzn — znH "z f— (.’t" o flf' (z”) — zn+i’ n — .’I:""H) +
+ ll(f’(xn), " — xn+i) < u(f’(x"), m — xn+i) —

= a(f (z"!) 4+ A (2" — z71) 4 r, 2™ — 7).
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Hore, A= [/(en). = /'(a7) — f (&) — "(an) (an —2n), Il =
o(llz» — xzn-1|]), [ is the unit operator. Thus,

!| - gnH ”2 <~ (.Z"—’ _ (1]'/ (xn—i) — an, ant xn) +
+ (I —ad) (z7 — znY), 27H — 27} + a(r, z* — 27*1) <
K< U T—adllifzr —ar 4 Nrl) 2+ —an || <
< (max [1 —oai]llzr —zr i+ lirl) lant —2n || <<

m<A<M
< (glizr—a i+l rll) | vt —zn ),
Hence
lz® — 2t < glla” — 27| 4 lirll = (g + 8x) ™ — 2n-1
where 0, = 7|l / |l — 277! -0 as n— oo (since liz* — z"1|| —0),

which proves the last assertion of the theorem.

Notes. 1. The assumption in (4) and (5) of Theorem 5.1 that ) is
bounded is superfluous.

2. In (5), it is sufficient to reqguire that the functional be strong-
ly convex and uniquely differentiable. We have confined ourselves to the
case of a twice differentiable functional since this simplifies the
proof and enables a better estimate of the convergence rate to be given.

3. In the case of unconstrained minimization, method (5.1) is the
same as (4.2), and (5) of Theorem 5.1 becomes similar to Theorem 4.3.

4. The estimate of the convergence rate in (2) cannot be improved.

5. While the present paper was in the press, {25] appeared, in which
the same method is considered and similar results obtained; but no con-
vergence rate estimate was given.

We now see what aspect the gradient projection method takes on in
various concrete problems. We shall not write down its convergence con-
ditions in each case, since they can be obtained from Theorem 5.1 and the
nroperties of functionals and sets described in Section 2. Notice that
many of the methods described below have been used in computational
practice, though their convergence has not been proved.

1. The finite-dimensional problem min f(x), x = (x;, ..., x,), under
the constraints aq; <C z; < b;, i = 1,...,m. Method (5.1) becomes



Constrained minimization methods 21

af

a;. if " — ﬂnT = ay

of af
n+1 n - iy
z; = { " — ooy e if o< Un FRI bis (5.2)

d

b;, if z"—an —f— = b,
03:1-

2. The problem of non-linear programming with linear restrictions:
min f(x), x = (xy, ..., x,), under the constraints dAx<Cb, b E,., 4 is
an m x r matrix. Here, at each step of method (5.1), we have to solve the
problem of quadratic programming

min 2" — apf (zn) — z |12

Ax<h
Notice that Rosen’s gradient projection method [26] differs from the pre-
sent (e.g. the points x™ and x"*t1 do not need to lie on one face of the
polyhedron, as in Rosen’s method).

3. The problem of min f(x) under the constraints 4x = b, where x = £,
b = E,, E,, E, are Hilbert spaces, A is a non-degenerate (i.e. 4| = £,)
bounded linear operator from £, onto K,. Method (5.1) now becomes

znH = " — q,f (z7) — A" (A4*) 1A (2" — a.f (z7)). (5.3)

Incidentally, (5.3) can also be regarded as a gradient method for an un-
constrained extremum, if we regard the subspace 4x = 0 as an indepeundent
Hilbert space. If, in particular, the constraints are specified by means
of a finite number of linear functionals (ci, z) = Bi, i = 1,...,m, where
¢y, ..., cp Aare linearly independent, then method (5.3) becomes

m (9.4)
= gn — q, [f’(z")—}- Z Aici ], (¢i, %) = B, i=1,....m,

i=1

where the A; satisfy the system of linear algebraic equations

8

Dhiles, )= — (5 F' (=), T=1,...,

i=1

In particular, in the linear optimal control problem (2.1), (2.3) with
fixed values of x(T) = d (we can naturally assume ¢ = 0 here), the con-
dition x(T) = d is equivalent to specifying the values of m linear func-
tionals of u. Hence method (5.1) becomes
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wrH(t) = un(t) — an(Fu — B'}), (5.5)
where y(t) is the solution of the linear boundary-value problem
B —to+F. Dtz tBE-BY, F0)=FD=0,
and the condition x%(T) = d has to be satisfied for u0(t).
4. For the problem min f(x) under the constraint g{x)<T 0, where f,

g are convex differentiable functionals in Hilbert space, method (5.1)
becomes

_{x"—ani’x”), it g@E"—aaf(2"))<0;
if  g@™—anf’(2")) > 0;

where x is found from the conditionc

x'ﬂm}-i

(5.6)

zn — af (%) — T = Ag'(F), A=0, g@) =0
F‘or instance, if the restriction g(x) <0 is linear, (¢, x)<CB, then
x = x" - af '(x™) - Ac, where A is obtained from the condition (¢, x) =B.
If the constraint g(x)<{0 has the form |zf| << B, then I = f[a"—
anf (z")] : 2™ — anf’(z7)|l. Method (5.6) can be used for the optimal
control problem in which one of the following constraints is present:

T T
(<  §emuea<p {luolka<s
0

¢

or, more generally,

T

gem)<o.  §e@ena<o
0

In the case of several differentiable constraints g;(x) << 0 we have
to solve, at each step of method (5.1), a finite-dimensional problem of
mathematical programming (quadratic programming if the g;(x) are linear).

5. The optimal control problem (2.1), (2.2) under the constraint
u(t) e ¥, for almost all 0<Ct=CT, where Y, is a convex closed set of
Er for all t, can be solved by method (5.1) in the form

™t (1) = un(t) — P, (u(t) — anf (un)), (5.7)

where f’(u) is given by (2.4), while P‘“t is the operator of projection
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onto ¥, in E, (for each t). In particular, if the constraints are
a; () <<u; ()b (t), i =1, ..., r, then
ai(t), if  wi(t)<<ai(t);
P, (ut)) =1 wi(?), 1if  a()<<ui(t) < bi(t); (5.8)
bi(t), if u,-(t)> bi(t).

6. Let ©),, ), be closed convex sets in dilbert space, Q, being
bounded. Then there exist x*< Q,, y* € Q,, such that

lz* —y* Il = p(Q1, Q) = inf llz—yl,
xEQ, yEQ;
i.e. x*= PQI(y*), y* = PQz(x*). If Q, or Q, is strictly convex, while

Q; N Q, = ¢, then x*, y* are unique. The problem of finding x*, y* is
equivalent to the problem of minimizing

f(z) = p%(z, Q=) = llz — Pq,(2) I = inf lz—y 2 ma Q..

UEQz
We consider the gradient projection method for this last problem. It
can be shown that f(x) is differentiable, f'(x) = 2(x - sz(x))' f'(x)
satisfies a Lipschitz condition with constant 2. Applying method 5.1
with o, = %, we get
z™H = Pqo,(Pq.(z")). (5.9)

Thus the method amounts to successive projection onto O, and Q,. Since
f(x) is convex, we find from (2) of Theorem 5.1 that, for (5.9),

lHm [[z7 — Pg,(z7) Il = Ilz* — y" Il

n-»oC
If O, or Q, is strictly convex, while Q; [l Q, = 9, we can apply (3) of
Theorem 5.1, so that x" st x*, Poz(x") st y*. Finally, if Q; or O, is

uniformly convex, and Q, N 0, = ¢, the strong convergence of method
(5.9) will follow from (4) of Theorem 5.1.

6. Conditional gradient method

The essence of this method for minimizing a functional f(x) on a set
Q) is as follows: we linearize f(x) at the point x™ at each step, solve
the auxiliary linear problem of minimizing (f'(x"), x) on {), and deter-
mine the minimum x" in this problem from the direction of the movement
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to obtain the next approximation. Thus,

(f'(z7),z7) << (F(z"),2) for all z=Q, Ine Q, (6.1)
=g + g, (A" —27), 0< an < 1. (6.2)

Theorem 6.1

Let Q be a bounded closed convex set in reflexive space E, f(x) be
differentiable on , where f'(x) satisfies a Lipschitz condition with

constant ¥, and let a, == min {1, yo(f'(z"), 2" — z") | || 2" — z" ||z}, where

x" is defined in (A.1), and 0 < 1= Yn (2 - €9)/Y¥, eg > 0. Then the
sequence (5.2) has the following properties:

(1) f(x") is monotonically decreasing and lim (f'(an),2» — z7) = 0;
00

(2) if f(x) is convex, then lim f(z")==f" = inf f(x), where f(x™) -
x&=Q

>0

f*<C c/n, and a subsequence x" exists, weakly convergent to the minimum
x*;

(3) if f(x) is strictly convex or Q strictly convex, while f'(x) # 0
on ), then x™ is weakly convergent to the (unique) minimum x*;

(4) if f{x) is uniformly convex or () uniformly convex, while f'(x)#0
on 0, then x" is strongly convergent to x*;

(5) 1f f(x) is convex and ||f'(z) = &> 0 on Q, while Q is strongly
convex, then x" is convergent to x* at the rate of a geometric pro-
gression.

Proof. We observe first that, by Theorems 1.2, 1.3, the point X" in
(6.1) exists (and is unique, if Q is strictly convex).

Just as in the proof of Theorem 5.1, we get

fzntt) — fzn) < (F (27), 27 — ) + _‘]_g_ lzn+t — zn |2 =

M 7;2
= —an(f (&), 2" — )+ —

1f 1 <<y (f/ (™), 2® — &7) [ |lz® — Z"{|%,thena, = 1and

flan —z= |2

@) — f(a0) < — ( (2m), 2n — F7) 4 lan — 30 2 =
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2 (f(a™),z"—z7)

<(/'(an), 27 )< =21 @), am 7).

1 1 = yo(F (27), x"—x") [ lz® — Z7||2, then

(7 (2, an — 20) ity o (M) 222
=y A A iy P2y

My (F(a),2n —F) _ e (f(e), @0 — E0)?

2 fan —znll2 2 lzn —zn |2

= (' (am),an —z") ( —1) <

anzvn

+ 0.

In both cases, f(x"*1)<Cf(¢"), 1i.2. f(x") is monotonically decreasing.
Since f(x) is bounded from below on ¢) (by virtue of the Lipschitz condi-
tion on f'(x) and the boundedness of Q), there exists lim f(z"), 1i.e.

n->-oc
= f(x") - f(x"1) - 0 88 n - . But (f'(x"), x" - T < 25,/ey in the
first case and (f'(x™), x™ - ™) <C (25,R2%/e,)% in the second
(R = sup flx — yll}. Hence, in both cases, lim (f'(z"),z" — ") = 0.

x,yeQ n-»00
Further, if f(x) is convex, there exists x*, f{(x*) = f* and 0<Cf(x"®) -
A< =™, 2™ =~ x*) = (f &P, 2" - 2 (), 2t - 2t <
(f'(xm), x" - x"). It now follows that lim (f(z") —f") = 0. We estimate

Tl (X
the rate of convergence. Let f(x") - f* = ¢,, when 5, = ¢, - @p+1. AS
was shown above, (f'(z2"), 2" — z") << max {2(@n — Q1) / €2, K(Pn ~—
@Pat1) ) << K(@n — @)t for large n. On the other hand (see ahove),
Pn << (f'(27), am —Zz"). Combining these inequalities, we get ¢, <
K2(@n — @nt1), 1.8, @nit << @n — @2°/ K% Hence we obtain, as in the

proof of Theorem 5.1, ¢,<Cc/n. The final assertion of (2) of Theorem
8.1, and also (3) and (4), follow from the general Theorems 1.4 - 1.8
on minimizing sequences.

We turn to the proof of (5). Using the strong convexity of ¢, we get

— A (rm N e Y — n xn_*_{fn“ f'(a:") N — N 2\|
(f (z7), &" — & )_z(f'(x b~ ey e+
f'(z™)

F2 (@) a e —E e ) > 207 (@), E)

+ 20 (@) lz — 22— 2(f (am), 27) = 2(f' (a), 2 — 2™) +
+ 2he [l zn — 27 |12
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Hence (f'(z"),z2™ —I") = 2he|lz™ — 2n |2

Let «, = 1. By what has been proved, ®» — Qnt1 = (22/2) (f (z"), 2™ —
") = (82/2)@n, 1.0 Qs << (1 — 82/ 2) @

If «p < 1, then

& (f/(an), " — &)

2 | zn — z7 |j2 = Aeey (f, (xn), n— .‘f”) = }"332‘?11,

Pn ~— Pnt =

i.e. Pnt1 = (1 — ABEz)(Pn

In both cases, therefore, @,+1 << q@n,q = max {(1 —e2/2), (1 —
Aeez)} <<. Hence, @n <C @og™. But (Theorem 1.6) @, =y | z» —z |2
so that ||z — z"|| << (go/v)'"2q™?, which completes the proof.

Notes. 1. The asymptotic formulae ¢, = O(1/n) in (2) of Theorem 6.1
cannot be improved without extra assumptions about Q (even if we demand
strong convexity of the functional).

2. Method (6.2) was discussed in the general form in [27], but none
of the above convergence rate estimates were given. In addition, the
coefficient «, is defined in [27] as in the method of steepest descent,
and not as in Theorem 6.1; some unnecessary restrictions are also im-
posed on f(x) and Q.

3. A whole group of methods, intermediate between the gradient pro-
Jection and the conditional gradient methods, is considered in (28]
(without proof of convergence).

We now examine the aspect of the conditional gradient method for
various concrete problems, without dwelling on the convergence condi-
tions, which are readily obtained from the above results.

1. The problem of non-linear programming with linear constraints:
min f(x), Ax<<b, x <= E,, b = E,., where A 1s an m x r matrix. To de-
termine x* at each step we have to solve the auxiliary problem of linear
programming: min (f'(x"), x), Ax<Cb. Method (6.2) was proposed in this
form in [29], and statements (1) and (2) of Theorem 6.1 proved for this
case,

2. For the restriction || x||s§ p in Hilbert space || z* || = —pf’'(z)/
I #/(z*) [, so that method (5.2) becomes
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f'(z")
I (@)l

FntH — " — ay (P

+ zn) : (6.3)

It is easily shown that, as p — o, the method approximates to the ordi-
nary gradient method (4.2) for an unconstrained extremum. The method
can be applied in this form both in the finite-dimensional case (con-

m
H
straint ( 23132) < p), and in optimal control problems (constraint

(12

3. For optimal control problems (2.1), (2.2) with constraints of the
type u(t) = ¥, for almost all 0C<t<CT, M; is a bounded closed convex
set of Er for all t, method (6.2) becomes

u(8)dt )'/’g p.)

H'Mﬂ

unrti(t) = un(t) + an (@™ (t) —un(t)), (6.4)

where u”(t) at each instant t realizes on ¥, a minimum with respect to u
of the linear function (h(t), u(t)), where h(t) is given by (2.4). The
method was considered in [30, 31] for problems of this type.

Notice that, when system (2.2) and F(x, u, t) are linear in u, the
method is the same as the method of [32] (see also (22], section 6.6),
so that a proof of the convergence of the latter method can be obtained
in this case.

7. Newton’s method
The idea of this method lies in approximating the functional f(x) to
be minimized at each step by a quadratic functional (first terms of a

Taylor series) and taking the minimum point of this functional on Q as
the next approximation. Thus, xnt1l is given by the condition

e, folz™H) < fu(2x) for all z 0,

fal®) = (' (&), 2 — 2%) +12(" (z") (& — 27), & — a).

(7.1)

The modified Newton method [2] can be extended in exactly the same way
to the case of constraints, but we shall not dwell on this.
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Theorem 7.1

Let Q be a closed convex set in Hilbert space E, f(x) a functional
twice differentiable on (, where f"“(x) satisfies the conditions

mlylP< (f(2) y,y) <Mlylz, m>0, (7.2)

@ =@ I<Rlz—zl (7.3)

for all x, z & Q and all y. Further, let 6§ = (2R/m) |2t — 2]l < 1,

where x! is defined in terms of x0 from (7.1). Then the sequence (7.1)
is convergent to the minimum x*, where

m = Rk
=z < - D 6.
lan—2* | < 232
=n
Proof. Since f,(x) has a minimum on Q at the point x"*l, (f,'@x"t1),
x will also have a minimum on Q at this point, see (1.1). Hence
(f,n"(xn-H), gt xn) — (f(xn) + f”(xn) (xn-H —_— xn)’ xn-hi —_— .’E"’) < 0‘

Consequently,
) = (F (@), 2741 — ) (@) a4 — ) 274 — ) <

< ___;‘.(fll(xn) (zn-H —_ xn),xn+i — xn) < — _gi “ gntl — pn Hz

Thus,

| 2nH — 2n [ < — 2 fy (7). (1.4)
m

On the other hand, f,(z"*) = (f'(z"), 2"t — 2%) + (/" (2") (2" — 27),
anH — gn) > (f/(zn), 27 — zn), Further, by (7.3), f/(z") =f(z"!) +

7 (xm1) (z7 — z"~1) -+ r, where [rll << Rllz™ — z"~4]|%. Hence

”““fn (xn+i) < ___(f’(xn), anH xn) p—
_(f'(xn——i) .Jr. f"(xn—i) (.’I:" _— xn-—i) + r, gt xn) pr—
_(f’ﬂ-i (‘Tn)$ gt — xn) + (l‘, Zntt — xn) = (?‘, ZnH __,xn) <
< rillizrtt—azn i < R 2 — an-t 2 [zt — 27

I
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Combining this with inequality (7.4), we get [z»* —zn]| << (2R m)
flz® — zn~1|j2, Hence it follows by induction that [lant — zn|| <<
(m /2R)82". Hence

h—1 h—1
. . m i
lzh —zn || < anm-x*ng—z—ﬁz 8%,

i=n

i.e. fjzr — 27l -0 as k,n— oo, The sequence x" is therefore funda-
mental, so that there exists z* = lim z?, where x* = { and

TI—>00

lon—a' I < o 3 8

i==n

It is easily shown that the sufficient condition (1.3) for a minimum is
satisfied at x*, which completes the proof of the theorem.

Notes. 1. The condition 6 = (2R/m)lz* — z%| << 1. characterizing the
closeness of x0 to the minimum is more conveniently checked than any
other condition, including [z°— z*|.

2, If Q = E, (7.1) becomes the ordinary Newton method (4.9), and
Theorem 7.1 is the same as Theorem 4. 4.

3. Newton’ s method seems not to have been used previously for prob-
lems with constraints.

We give some examples of applying Newton’s method.

1. For the problem of non-linear programming with linear constraints
min f(x), Ax<Cb, x = E™, b = E7, where A is an m x r matrix, method
(7.1) amounts to a sequence of problems of quadratic programming

min [ (7 (z7),2— 2+ 5 (7 (e") (= 7).z — 7).
Axsch 2

2. For the linear optimal control problem (2.1), (2.3) with a fixed
value of x(T) = d (so that we can assume ¢ = 0), method (7.1) is the
same as Newton’s method for the unconstrained extremum problem (4.16)
except that the boundary conditions become x(0) = x(T) = 0.

3. In the case of the linear optimal control problem (2.1), (2.3) with
constraints of the type u(t) = ¥, for almost all 0<Ct<< T, method (7.1)
reduces to a sequence of problems on minimizing a quadratic functional
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under the same constraint. The method of solving this latter problem is
given in [33].

4. In the case of the non-linear optimal control problem, Newton’s
method is extremely laborious. However, we can use here a method which
is an analogue of (4.11) for the case when constraints are present. This
method is therefore the same as the Newton method described above for
linear systems, provided we take at each step, as the linear system (2.3),
the linearized equation (2,2), i.e. the equation dx/dt = ¢,z + Quu.
x(0) = 0.

8. Methods of set approximation

The essence of this group of methods is to replace the initial prob-
lem of minimizing f(x) on a set Q0 by a sequence of problems on minimiz-
ing f(x) on sets ), approximating to Q. The set sequence Q, can be
chosen in advance (as in the Ritz method), or the next (, can be deter-
mined from the results of the previous problems (as in the cut-off
method). As distinct from all the previous methods discussed, the
successive approximations obtained in set approximation methods do not
necessarily belong to the initial set Q.

Theorem 8.1

Let O be any set in Banach space E, and f(x) a functional satisfying

a Lipschitz condition on a (), and bounded from below on Q:

n={

inff(z) = f > —o0,
x=Q
Let Q, be a sequence of sets, and the sequence x" & (), such that

f(z*) << inff(x) + &n, limen, =0,
xEQn

n—o0
where
lim ief |z —yll=0 for all z&Q, (8.1)
nox yeEQ,,
lim inf [fz*» —z [ =0. (8.2)
nsoo x=Q

Then lim f(2") = f*.

n—-+
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Proof. Let y* & Q be a minimizing sequence for f(x) on 3, i.e.
Emf(y*) =f (f(y*) = ). By (8.1), given any yk & 0, there

k—o0

exists a sequence :" & (), such that lim z" == yk By the Lipschitz con-
To—p OO

dition on f(x), lim f(z") = f(y*). Hence

Ne=r OO

f(y*) = lim f(z") = lim (inf f(z))>> lim (f(2")— £,) = lim f(z").

00 xEqn VL OO n—>oo

Passing to the limit as k& — o, we get Hfﬂf(x“) << f*. Further, given any

-0
¢ > 0 there exists for sufficiently large n, x" & () such that H xP -
7" || < €. Hence, by the Lipschitz condition of f(x), |f(xn) —

FG™ |l Me. But £(z™) = f*, since x* & 0. Hence lim f(z") =

n—»oo

f(x") — Me = f* — Me. Since e 1s arbitrary, we now have

lim f(z) = 1", i.e. h'_mg—f(x"):__- lim f(z7) = f*.
;;:; no>xo 77—:@
Notes. 1. If the sequence (, is such that 3, < ¢ for all n, (8.2)

is obviously satisfied, while if Q < Q, for all n, (8.1) is obviously
satisfied.

2. Notice that the theorem does not demand that the sequence Q, be a
good approximation to Q everywhere; it is sufficient that it approximate
Q in a neighbourhood of the minimum. In particular, it can happen that

@D Qnys.0Q, but ﬁ Q. # Q (as in fact happens in the cut-off method).

=1}
3. The sequence x" obtained in Theorem 8.1 is a GMS (Section 1) so
that Theorems 1.4 - 1.6 are applicable.

Some methods of obtaining the set systems (, are discussed in the
next two sections.

9. Ritz’s method

The idea of this method, which is well known for problems without con-
straints {45], is to approximate the admissible set by finite-dimensional
sets.
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Let al, ..., a®, ... be a complete system in Q, i.e. for any x 9,

=

n
lim inf “x-— Dl M
=t

n—>oo ).,...J\.n

We shall call it a basis. We denote by L, the subspace stretched over
al, ..., a". We take 9, = L, [l O and solve the minimization problem
for f(x) on Q,. This problem is finite-dimensional, since it amounts to

n n
minimizing (A, ..., An) = ]‘(Z }wai) under the constraint Z Aat = (.

T=1 j=1
Theorem 9.1

Let Q be any set in Banach space E; al, ..., a™ be a complete system
in Q; f(x) a functional semicontinuous from below on ). Let the sequence

x" be such that z"* < Qn, f(z) <<inff(z) + &n, lime, = 0. Then

r=Qp n->00
lim f(z%*) = f* = inf f» (x).
n—00 xezQ
Proof. Let yk be a minimizing sequence. Since f(x) is semicontinuous
from below and the basis is complete, for any y* we can find z* & Q,,

f(z*) — f(y*) < f(y*) — "+ 6k, lim6x = 0. The sequence zk will now

k—00

also be minimizing, i.e. lim f(z*) = f*. But, by definition of x",
£-»00

f(z%) < f(z*) + en. Hence lim f(z") = f".

n—»oc

n
The Ritz method is worth using when the constraint 2 Aiat = Q 1in

E, is not too complicated. We give some examples.

1. For the optimal control problem (2.1), (2.2) under the constraint
u(t) € Y for all 0<Ct<C T step functions are best taken as the basis.
In fact, we introduce the functions a;; (") (t), i =1, ..., r, j =1,

N

T T .
1, if —(—-H<t<—],
n n

aii™(t)y =
#™() 0, otherwise

and seek u(t) as a combination of these functions
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ui(t) = 3 hiaif™(t), i=1...,r (9.1)

=t

The constraint u(t) = M now generates the constraints A; M, 7 =1,
.., n, where A; is the vector with components A,;, ..., A.j. In particu-
lar, if the initisl constraint hes the form |u;(t)|<C1, the constraint
on A;; is unusually simple: lhijlg 1 for all i and j. The auxiliary
problem thus reduces to minimizing a function of rn variables A;; under
simple constraints on these variables, We emphasize that, to evaluate
the function for any values of the A;;, we have to introduce the control
u(t), (9.1), integrate system (2.2) with this control then evaluate the
functional (2.1). This is not equivalent to the method of finite-differ-
ence approximation commonly employed for equations and functionals.

2. If there are no constraints, or they have the form
i
0

in the optimal control problem, other bases can be chosen. For instance,
we can use 8 system of trigonometric polynomials or Legendre polynomials.

H'M"

T
u(t)dt <<p or Suﬁ(t)dtgp,—, i=1....,r
1 1]

3. If the optimal control problem (2.1) and (2.3) is linear, we can
also apply the Ritz method when there are also constraints on the phase
coordinates, For, if there are constraints gk(x(tj))ﬁg'o, E=1, ..., s,
specified at a finite number of points t; (in particular, the condition
x(T) = d), then, since xi(t;) is a linear functional of u, each such con-
straint generates a constraint on a linear combination of coefficients A.
In particular, if all the g, are linear, we obtain the problem of non-
linear programming for A with linear constraints.

4, If the constraints in problem (2.1), (2.3) are g(x(t))=<0 for all
0{t<<T, g(x) 1s a convex function, then (2.1), (2.3) can be approxi~
mated by problems with step functions u and constraints glx(t;)N<o,

t; =Ti/n, =0, ..., n- 1.

Let their solution be u"(t), x7(t)}. Since g{(x), x(t) are continuous,
g(x(t;))<<O0 implies lim g(z”(f)) << O for all ¢, i.e. g(u") = max
n—+oc OHLT

glz"(t)) >~+0 asn-ow.

If g(u) << 0 is a correct constraint (see Section 2 for the condition
for this), then un(t) is a GMS (Section 1) and Theorems 1.4 - 1.6 are
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applicable. In particular, for the classical variational problem (i.e.
for system (2.2) of the type dx/dt = u, r =m), g(x(t;)<CO implies
g(x(t)) << 0 for all ¢, (x(t) corresponding to piecewise constant u(t),
piecewise linearly, so that the constraints g(x(t)<C 0 only need to be
checked at the corners of the step-line). Thus we here obtain simply a
minimizing sequence, and not a GMS.

5. If an entire system of constraints is given, for each of which the
Ritz method (with the same basis) is applicable and reasonably simple,
the method will not be too difficult for the problem as a whole. In
particular, the Ritz method is easily applied for the linear optimal con-
trol problem in which there are constraints of the types u(¢t) & ¥ and

T r
S :quz(t)dts;() and constraints on the phase coordinates. Herein lies
G i==1

the important difference from the methods previously considered, where
an ability to solve the auxiliary problem (projection, finding the
minimum of a linear functional, etc.) on each set separately does not
necessarily enable us to solve it on their intersection.

10. Cut-off methods

In these methods the problem of minimizing f(x) on Q is solved
successively on the sets Q, ©(Q,+, D Q. After finding the minimum point
x" of f(x) on Q,, we add a new constraint, »cutting-off* the point

Zp = J, which in fact determines the new set Q,+;.

Two convergence theorems are given for these methods below. In the
first, the admissible set is specified by means of the constraint
gl{x, s)<C 0 for all s & §, s is a parameter; in the second, by means of
the single constraint g(x)<C 0. This difference is only apparent. For,
introducing the functional g(x) == supg(z,s), we can reduce the con-

se&=S

straint g(x, s)=<C 0 to g(x)=<C 0. On the other hand, if g(x) is a convex
functional, the constraint g(x)<< 0 is equivalent to the system of
(linear) constraints g(s) + (g'(s), x - s)<C 0 for all s & FE, where
g'(s) is a linear support functional to g(x) at the point s. The real
difference between Theorems 10.1 and 10.2 is that the former refers only
to the finite - dimensional case; though far weaker conditions are im-
posed on the functional in it than in Theorem 10.2.

We take the problem of minimizing the functional f(x) under the
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constraints x & O, and g(x, s)<<0 for all s = S, S is a set. Let

Q=0, N {x : gz, s)< 0 for all s & S}. The following method of
solution is possible. Suppose we have obtained the set (, (we start with
= 0). We find the minimum of f(x) on Q,; let this be at the point x".
We then solve the problem: maximize g(x™, s) with respect to s & S, let
the solution be s™. We now obtain 0,4, by adding the new constraint

glx, sMy={0. Thus

e Oy, f(z") = min f(z), g(z®, s*) = max g(z*, s),
x=Q, €28 (10.1)
Qni1 = Qn ) {x: gx,sm) << 0}-

Theorem 10.1

Let Q4 be compact, f(x) continuous on Q4, g(x, s) satisfy a Lipschitz
condition with respect to x with constant ¥ for all s & S, and method
(10.1) be applicable. Then, for the sequence (10.1),

lim f(z") = f* = min f(z),
n—»00 x=Q

and a subsequence x"i exists convergent tc the solution.

Proof. Since Q, D Qu4; D 0, we have f(x") <<f(x"*1) << f*. We show
that lim g(zn, s®) << 0. Let there exist e > 0 such that g(x, s") >

n->00
for all reasonably large n. Now, & << g(z", s") = g(an,s") —
g(z*, sm) + gzt sm) < Mla» — 2+l + &(z*,s?), But since
P — Qn+1 for k > n, we have g(xk, sM <0, i.e. la — 2k =>e /M for

all reasonably large n and all k& > n. But this contradicts the compact-

ness of Q,. Hence lim g(z", s®) << 0. We select & subsequence x"! for
‘n——)w

which lim g(z":, s™) << 0 and for which there exists z* = limz": (this

i-+00 i->00
is possible because Q, is compact). Now, g(z*,s) = g(z*,s) — g(z™,s) +
gz, s) < Miz® — zmill + g(a™, s™i) Hence g(x*, s)<CO0 for all s = S.
Thus, z* & Q. Since f(x"!) <Cf*, we also have f(x*)<Cf*; on the other

hand, f(x*) > f* be definition of f*, Hence x* is the solution of our
problem.

We now consider the cut-off method (10.2)
f(z®) = min f(z), Qnir=0CaN{z:g(z") + (g'(@"),z—2z") < 0},

xEQn
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for the problem of minimizing f(x) on Q specified by the condition
Q= {x: g(x)go}, where, as usual, g’'(x") is any linear support func-
tional to g(x) at the point x", and Q3 > Q is a set.

Theorem 10.2

Let f(x) be uniformly convex on Q, — E, where E is reflexive, Q,
convex and closed, and g(x) a continuous convex functional satisfying a
Lipschitz condition on ;. We now have, for method (10.2):

1) lim f(z*) < f* = minf(z), limg(z")<0;

mM->00 xe=Q

2) if g(x) 18 a correct constraint, and f(x) satisfies a Lipschitz
condition on Q,, then lim z" =2", 2" = Q, f(2") = and lim f(an) = f";

n—oc n—>»+o0

3) if, in addition, f(x) 1s a weakly convex functional and there
exists x: g(x) < 0, x is an interior point of Q,, then the convergence
rate satisfies f(z") — " << e /n, 2" —z" <o/ Yn

Proof. Since Q@ D Qnyy D Q, Wwe have f(z™) < f(z"H) << f*, and
there exists f* = f=Ilimf(z"). Since f(x) is uniformly convex, while

n—co
x" is the minimum of f(x) on Q,, we have f(x) - f(x™ = d(lla» — zl)
for all x & Q,; in particular, f(x"*1) - f(x") = §(lanH — z"|). Hence

it follows that lim |z"*t* — zn|| = 0. Further, since "t < Q,q. we
n—+00
have 0 = g(2™) + (g'(2™), 2z —2z") = g(z") — lg’ (@) lzn+t —2n]l,

i.e. g(zn) << Milantt — zn|| (since llg’(z™)| is bounded by virtue of the
Lipschitz condition on g(x)). Hence lim g(z") = 0.

n—-0

We turn to the proof of (2) of the theorem. If g(x") < 0, then
" < Q, so that f(x") = f*, i.e. in this case x" is the solution. Let
g(x®) > 0 for all n; now, by what has been proved, g(x") - + 0 as n » ™.
If g(x) 18 a correct constraint, it follows from this that lim p(z",

>0

0) = 0. Theorem 8.1 is now applicable, whence lim f(z") = f*. But it

n—->-00

follows from this, by Theorem 1.5, that x™ converges to the solution x*.
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We now estimate the convergence rate for strongly convex functionals.
For these, the above condition f(z"*) — f(z?) = &(lla"*! — z7|) becomes
flxzmt) — f(z™) = yllantt — 272, y > 0. Further, let g(x) > 0 for all n
in which case there exists 0 < A, < 1 such that g(Z -+ A.(z" — %)) = 0.
Using the convexity of g(x), we get 0 = g(ZT+ In{(z® —Z2)) =< (1 —
A)E(E) + Ang(a), fee g(z®) = (1 —hn/ Aa) [—g(®)] = (1 —An)
[—g(x)]. But flan — (T +aa(Z* — 2))I = p(2"Q), so that 1 - A, >
p(zn, Q) / llzm — Zll = cp (™, Q) (because {x"} is bounded). Thus,

g(z?) =cp(z™, Q) [—g(Z)] = Kp(z",Q), K> 0. As was shown above,
g(z™) << Mljantt — zn)l.  Hence p(z®, Q) << (M / K)|an*+! — zn||, and

since f'—f(z") << Lp(a™, Q). then f — f(z") << (LM / K)llamtt — gn]],
Let f* — f(z®) = @n. We have obtained ¢, << (LM / K)jlzn*! — zn||, while
above we obtained j(z"H) — f(z") = ¢n — Pnyt = yliz"tt — 2|2 Combin-
ing these, we get

vK?
L2M2

Pt X< Qn — (Pnz-
Using the same technique as in the proof of (2) of Theorem 5.1, we ob-
tain the required estimate.

Note. It is not clear whether the convergence rate estimate obtained
above can be improved.

We now consider the aspect of the cut-off method in various concrete
problems.

1. The general problem of convex programming (minimization of f(x)
under the constraints g;(x)<<0, 1 =1, ..., r, f(x), g;(x) are convex
functions in E,) can easily be seen to reduce to the problem of minimiz-
ing the linear funetion x,4, under the convex constraints f(x) - x,4; <<
0, g;(x)<<0, it =1, ..., r, in space E,4,. Further, the system of con-
vex constraints of the type g;(x)<C0, i =1, ..., r, reduces to a single
convex constraint g(x)<{ 0, where g(x) = max g;(x). Thus, instead of the

1<igr
initial problem, we can consider the minimization problem for the linear
function (¢, x) under the convex constraint g(x)< 0. Let Q, be a poly-
hedron (if the constraint x & {, is absent, it has to be artilicially
introduced, e.g. in the form lxiT< M for all i, ¥ is a large number).

Now, Quit=Qn{z:g(a”) + (g'(2"}),z— *) << 0} 1is also a polyhedron.
Method (10.2) thus reduces here to solving a seguence of linear
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programming problems. The convergence of the method can be proved by
Theorem 10.1. For, the constraint g(x)<{0 is equivalent to g(x, s) =
g(s) + (g'(s),z—s) << 0 for all s. Method (10.1) is now easily seen
to be the same as method (10.2).

This »method of cutting planes* was proposed by Kelley for this
problem [34), and he proved its convergence,

2. The problem of best approximation amounts to minimizing

m
(z) = max| o(6)— 3 zpi(s) |,
s=8 i=1
where S is a compactum, ¢(s), p;(s) are continuous functions on it, and
the ¢;, ..., ¢, are linearly independent. In addition, certain auxiliary
constraints can be imposed on the coefficients x;: x = Q4. This problem
amounts to minimizing x,+; under the constraints

m
‘ P(s)— E 2i9i(s) | < Tmpu for all s&S8, z=0,.

i==i

Method (10.1) is applicable to this problem, where it takes the follow-
ing form: x,%, ..., x,k, xﬁ , s the solution of the problem: min xn+;

+
under the constraints

m

' e(si)— xi(Pi(Sj)\ Koy, J=1,...,k z&Q, (10.3)

i={

sp+y 18 given by the condition

m
| otoni)— D 2tgs(snse) | = max | p(5) = J zoqu(e) |
==t <5 i=t
The method thus reduces to solving a sequence of problems of best

approximation on a discrete system of points s,, ..., sp (which is equi-
valent to the problem of linear programming if J, is a polyhedron) and
to determination of the maximum modulus of the deviation for the next
approximation. Methods of this kind are familiar in the theory of best
approximation (see e.g. [35]. which contains various results on their
convergence and also references to other work).

3. We consider the linear optimal control problem (2.1), (2.3) under
constraints on the phase coordinates of the type q(x(t)) << 0 for all
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0<< t<< T, where g(x) is a convex function. We investigate the method
whose n-th step consists in minimizing f(u) under the constraints

gz (1)) + (¢'(2*(t)), o(t:) — 2i(4)) <O, i=1, ..., n—1, where
xi(t) is the solution of the problem at the i-th step, and t; the point

introduced at this step. We introduce the next, n-th point from the con-
dition

g(z™(tn)) = ogga(x"(t))- (10.4)

This method is a variant on method (10.2). For, the constraint
g(x(t))<< 0 is equivalent to g(u)<C 0, where

g(u) = max g(z(t))
I<t<T

is a convex functional (as usual, x(¢t) is the solution of (2.3) corre-
sponding to the control u(t)). Further, 1f (10.4) is satisfied, for one
of the support functiomals to g(u) at the point u” the constraint

g(@™) + (g'(u"),u —um) << 0 becomes g(z"(t")) + (¢’ (z"(n)), z(tn) —
z™(t,)) <0, i.e. is the same as the above. We can therefore apply
Taeorem 10.2 to prove the convergence. All the assertions of the theorem
will certainly be satisfied if Qg = E, f(u) is a strongly convex func-

tional, and g(u) a correct constraint (the sufficient conditions for
this are given in Section 2).

We shall not dwell on methods of solving the auxiliary problem. We
merely remark that it consists in minimizing f(u) under a finite number
of linear constraints of the type (c!, u)<la;, i =1, ..., n=1. It
can therefore be solved like any analogous finite - dimensional problem
of mathematical programming.

11. Method of penalty functions

In all the methods discussed so far, the constrained extremum problem
has been reduced to a sequence of simpler constrained extremum problems.
The initisl problem may also be reduced to a sequence of unconstrained
extremum problems. In the method of penalty functions the unconstrained
problem is obtained by introducing a penalty on infringement of the con-
straints. This idea is common in computational practice [20. 22, 36 - 42);
it seems to have been first clearly stated by Courant.

We give some examples of penalty functions. We shall assume that our
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set is given by means of one constraint g(x) <C 0, and consider a sequence
of penalty functions of the type y,(x) = ¢,(g(x)). The following are the
most popular examples of such functions.

1. Palz) = Kng ()1, (11.1)
where A, =0, lim K, = oo; here and below, g(z) = max {0, g(z)}.
Obviously, y,(x) =0 for all x; limy,(r) = oo, if g(x) > 0; the y,(x)
are convex if g(x) is convex.

2. ¥u(z) = (g(z)+ +1)" — L. (11.2)

It is easily shown that y,(x) =0, y,(x) =0, if g(x)<<O0;
lim Y, (z) = oo for g(x) > 0; the y,(x) are convex if g(x) is convex.

n—>00

3. Vnl(z) = [(g(z) + 1)4]™ (11.3)
Herev Wn(x) 20 for all X, llm ’lpn(.’l‘) — oo for g(x) > 0' as distinct

from the previous examples, generally speaking, y,(x) # 0 for g(x)<<O0
(for instance, w,(x) = 1 for g(x) = 0), but lim {P,(x) = 0 for g(x)<0.

n—>o0o

In addition, the y,(x) are convex if g(x) is convex.

4.
+ o0, it g(z)=0,
Pn (2) = . (11.4)
——2 . 1f g(z)<<0,
g(x) (
where o, =0, lim_an = 0. As before, y,(x) =0 for x, im},(x)=0

for g(x) < 0 and the y,(x) are convex for g(x) < 0 if g(x) is convex.

The functions (11.4) are not continuous on E. However, we can intro-
duce more complicated functions of the same kind, which are continuous.
For example,

—a./g(z), if g(x) << 0and— a,/g(z) <Kn,
e (2) = Kn( ;:tg/—(? )n otherwise
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where a, =0

= ?

limo, =0 K,>=0, limK, = oo.

N> N-»00

Of course there are other examples of penalty functions. In particu-
lar, they can be obtained from (11.1) - (11.4) if the coanstraint g(x)<CO0
is replaced by the equivalent constraint p(g(x)) << 0, where p(t) is a
continuous function, and p(t) > 0 for ¢t > 0 and p(t) < 0 for t < 0.

We now consider the method of venalty functions itself for the prob-
lem of minimizing f(x) under the constraint x & ‘), where ) = {x :
g(x) << 0}. The method consists in solving (up to €,, Where lime, = 0)

n—»
a sequence of problems on the unconstrained minimum of f(x) + y,(x),
Ya(x) = ¢p(g(x)), 1i.e. in determining the sequence x™:

(") + ¥n(z") < dn + 84, da :;:Jfg[j(x) + ¥n(2)] (11.5)

Theorem 11.1

Let f(x) and g(x) be continuous, ) be non-empty, J.>=.4 > - ©,
Yn(x) =0 for all x, n, limYp(r)=0 on the set } everywhere dense in

n—>-oo

D, and lim @,(¢)==o0o0 for t > 0. Now, in method (11.5), f(xM) < f* =

n—>0

inff(x),mg(x") <C 0. If the constraint g(x) is correct, and f(x)

x<=Q n—oo
satisfies a Lipschitz condition in some neighbourhood ), then

lim f(z") = f*, limp (2", Q) =0, i.e. x" is a GMS.
n n—»-xo

— 00

Proof. Let y™ be a minimizing sequence for f(x) on 9, i.e. y™ = i),
lim f(y™) = f*. Given any y", we can find z™ & A such that |f(y’") -

m-—>oo

e | < f(y™)— 1 + 0m, limdn = 0. This is possible, since & is dense

m—>oo
in ) and f(x) continuous. Obviously, z™ is now also a minimizing sequence,
By definition of x", we have f(Z")+ VYn(2?)<< f(2™)+ Pn(2™)1 &n. We
take ¢ > 0, and choose m so that f(z™)<T f* + ¢/3; since :®» & R, we can
find an V so that y,(z™)<Ce/3 and e,<Ce/3 for all n>V. Now, f(x") +
Yo(xM) < f* + e. Since e is arbitrary, this means that lim (f(z*)

n—o0

yolx™) << f*, and since y,(x") >=0 we also have Hf(zﬂ) < f*. On the

n—»oco

other hand, lim $n(2")<<lim(f"— f(z")) << f* —d. hence it follows
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(since lim vy, (x) = lim ¢n (g (x)) = oo for g(x) > 0), that

n—»oo n-—>o00

limg(zm) << 0. Now let g(x) be a correct constraint. In this case,

n—>oo

lEg(z)gO implies lim p(z”, Q)= 0. Finally, it follows from the
n

n—00 —>00

Lipschitz condition on f(x) that f(z?)=f"+ Lp(z" Q), i.e.
lim f(z*) > f*. Finally, therefore, lim f(z")=f".

oo N>

Note. Penalty functions of the type (11.1) and (11.2) satisfy the
conditions of the theorem everywhere, but those of type (11.3) and (11.4)
only when R = {x : g(x) < 0} is dense in Q = {x : g(x) < 0}. The latter
is true, in particular, if g(x) is convex and R non-empty. Functions of
the type (11.3), (11.4) are certainly continuous if R is empty.

We turn to application of the method of penalty functions to specific
problems.

1. In the problem of mathematical programming the comstraints g;(x)<<
0, ¢ =1, ..., r can be reduced to the single constraint g(x)<C 0 by
many methods, e.g.

r

&(z) = max {g:(z)} or g(x)=Zaigi($)+, a; > 0.

iissr f=1

It is specially convenient to take

r

g(z)= Dlu:lgi(z) 4, @:i>0,

i=1

since g(x) is now differentiable if the g;(x) are differentiable. After
this, penalty functions of the type (11.1) - (11.4) can be applied.

As already mentioned, if Q is bounded, the constraint g(x)<<0 is
correct in the finite - dimensional case and Theorem 11.1 is applicable,
The method of penalty functions in the form (11.1) was considered for
problems of mathematical programming in [40, 22]. in form (11.4) in [38,
39], in a rather more general form of the same type in [41], and in a
form similar to (11.3) in (43].

2. If the constraints are in the form of equations g;(x) =9, i =1,
., r, they can be replaced by a single constraint of the inequality
type, e.g.
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g@)<0, g(z)= Daig(z), @:>0,

[Ed

after which the method of penalty functions can be employed. Here, it is
not possible to use penalty functions of the type (11.3) or {11.4), since
the set R = {x : g{x) < 0} is empty in this case. Penalty functions of
the type (11.1) were investigated for this problem in [42].

3. If the set  cannot be specified by means of functionals, it can
always be specified in the form g(x) =<l 0. In particular, for any set.
N ={x : g(x)<< 0}, where g(x) = p(x, Q) = infllz— y|l. This constraint
veEQ
is moreover correct and g(x) = 0 for x & . If Q is bounded, closed,
has an interior point (for simplicity the point 0) and is convex, then
it can be specified in the form Q = {x : g(x)<C1} by means of the

Minkovskii function g(z)== inf {A}. This conmstraint is also correct
A>0, x/AsQ

and convex.

4, We now turn to optimal control problems (2.1), (2.2). We take first
constraints on the control specified in the form

Q= {usLy: u(t) =M for almost all 0 <<t <7},

¥ is a convex closed set in E, having interior points, Let ¢,(u) be a
system of functions on . satisfying the conditions: (1) ¢,(u) =0 for
all u; (2) if u e Y9, {i.e. u is an interior point of Y, then

lim ¢, () = 0, where ¢,(u) is monotonically decreasing; (3) if u = Y,
n->r00

then g@n(u) = Knp*(u, M), where K, = 0, lim K,, = oo, X, is independ-
n—+od

ent of u, p(u, ¥) 18 the distance from u to ¥ (in £,). Notice that, if

Pn(u) = 0 for u & Y, we no longer require ¥ to be convex or have in-

terior points. The following are some examples of functions ¢,(u) satis-

fying all the conditions. If the constraints have the form

"
2 uiz(t) \<~ 1:

i=1
we can take
cpn(u)=Kn(Zui2—1) or @n(u)= (\Zuﬁ )n

A .
i=1 ==l
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If the constraints are |u;(¢)| <1, i=1,...,r, we can take

r

@n () = Kn(max {|u:|}—1)+ or en(u)="D |ui|"
1<i<r Gt
We introduce

T

o (2) = § @n(u(t))dt.

0

These penalty functions satisfy all the conditions of theorem 11,1. For.
Yo(u) =0, imyPa(u) =0 on R = {u: u(t) =M, and =g, while

n-»0o

finally,

i
()= on(u(®))dt= S on(u(t)dt= Kn § o2 (u(t), M) dt =
0 8 s
T
= Ko\ lu(t)— &(2) 15 dt = Knp?(u, Q),

0

where S = {t< [0,T]: u(t) € M}, u(t) is the projection of u(t) on
to Y. Hence, if the remaining conditions of Theorem 11.1 are satisfied
(i.e. the Lipschitz condition on f(u) and the boundedness from below of
f(u) + y,(u)), then in method (11.5), amounting to consecutive minimiz-
ation of f(u) + y,(u), without constraints, we have the convergences

f(un) _>f.v p(u", Q) - 0

The method of penalty functions can also be used if there are con-
straints on the phase coordinates. For instance, with the constraint
g(x(t))<< 0 for all 0t << T, we can introduce the penalty function

T

Pa(@) = Knlmax g(z()l or n(2)=K, §(g(z(t))4lrds (the latter

0<CI<T b
is specially suitable, being differentiable if g(x) is differentiable);
with the constraint x(I) = 4 the penalty function can be y,(u) =
Knllx(T) - d||E%. The conditions of Theorem 11,1 are easily shown to

hold here (the criteria for correctness of the constraints are given in
Section 2).

If there are several simultaneous constraints, each of them (or part
of them) can be replaced independently by penalty functions. But diffi-
culties arise here when verifying if the system of constraints is
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correct. Notice that the same difficulties arise in this situation in
the cut-off method (see Section 10).

The idea of applying penalty functions to optimal control problems
occurs in [20, 22, 35, 37]. But only [36] contains a proof of convergence,
for one particular case,.

12. The comnutational aspect

We obviously cannot consider the computational aspect of the full
range of extremum problems in the present section: this is a very import-
ant topic which has not been adequately investigated; the discussion of
it would have to be largely based on the results of numerical experiments.
We shall merely dwell on the computational aspect that can be illuminated
by the convergence theorems proved above,

A few words first about unconstrained extremum problems (Section 4).
It is clear from Theorem 4.1 that methods of the gradient type are
applicable to an extraordinarily wide class of functions and virtually
any initial approximations. For Newton's method on the other hand
(Theorem 4.4), very strict conditions are required for the functional
being minimizea and for the initial approximation. Further, Newton’s method
involves much more complicated computations at each step compared with the
gradient method (namely, we have to find the second derivative f "(x) and trans-
form it). Nevertheless, Newton’s method has one advantage: a high rate of con-
vergence, which is sometimes decisive. For, the conditions of Theorem 4.3 are
usually satisfied close to the minimum, and the gradient method (with optimal
choice of o) is convergent at the rate of a geometric progression with ratio
g=(-my/(f+m)=(p~-1/(p+ 1), where p = //m =>1. But 1n many
practical problems, p = /m is extremely large (e.g. in poorly stated
problems of linear algebra, "well organized" functions of several vari-
ables, and functions F(x, u, t) weakly dependent on u in optimal control
problems). In these cases g = 1 -~ 2/p, i.e. ¢ is close to unity and the
convergence of the gradient method is slow. In Newton’s method, however,
we have the quadratic convergence |z —z'| < (C82*, where § is inde-
pendent of p, but depends on how close the functional f(x) is to quad-
ratic in the neighbourhood of x*. Hence the convergence can be extremely
fast, even for large p. Accordingly, the following combination of methods
can be useful. We first use the gradient method, which does not require
a good initial approximation and provides fairly fast convergence at the
start. After the convergence of the gradient method has slowed down, it
usually becomes possible to apply Newton’s method, since a good initial
approximation has now been obtained. The extra complexity of the
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computations at each step is compensated by the substantial increase in
the rate of convergence.

We now turn to problems under constraints. In the methods of Sections
5 - 10 the initial problem reduces to a sequence of auxiliary extremal
problems on minimizing a linear (Section 5) or quadratic (Section 7)
functional on J, on projecting on to 7 (Section 8), or on minimizing f(x)
on sets ), (Sections 8 - 10). Naturally, a given method is only worth-
while if the auxiliary problems can be solved fairly easily. Actually,
all the examples in this paper were chosen so that the auxiliary problem
could be solved either explicitly or by some finite method (we count as
finite, methods which reduce to solving a Cauchy problem for a non-linear
ordinary differential equation or to solving a boundary value problem for
a linear equation).

As regards convergence rates, in the gradient projection method
(Section 5) we have convergence at the rate of a geometric progression
for a strongly convex functional and any convex set (Theorem 5.1), where-
as in the conditional gradient method (Section 8) convergence of the
same type can be proved for a convex functional having no absolute mini-
mum on 7, and a strongly convex set (Theorem #.1). On the other hand, the
auxiliary problems in these methods can be solved fairly easily in
roughly the same cases. It follows from this that, if the functional is
only convex, or if it is strongly convex, but p = }//m is large, the con-
ditional gradient method is worth using in the case of & strongly convex
set. If the set is not strongly convex, this method can give extremely
slow convergence. In particular, in the optimal control problem (2.1),
(2.3) with F(x, u, t) = F(x, t) and constraints of the type

r
:g n2(t)dt < p the conditional gradient method is suitable. If F(x,

i=1

-1 g Y

u, t) is strongly convex with respect to {x, u}, and the constraint is
u(t) = ¥ for all 0Ct = T, the gradient projection method is prefer-
able. As regards the gradient projection and Newton methods, they are in
roughly the same relationship as their analogues in the case of an un-
constrained extremum.

The question of the convergence rate for set approximation methods is
fairly complex. It is important to notice, however, that these methods
are still suitable for optimal control problems when the methods of
Section 5 - 7 lead to excessively difficult auxiliary problems, namely,
when there are constraints on the phase coordinates (see the examples in
Sections 9 ~ 10). In addition, in the cut-off methods (Section 10),
f{(x™=<< f*, which enables us to give a lower bound for f*. When combined
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with one of the methods of Sections 5 - 7 or 9, in which we always have
f(x™ > f*, this method can yield an error estimate for the approximate
solution.

We now turn to the method of penalty functions (Section 11). This
method is above all extremely general. It can be applied to virtually
any extremum problem (convergence counditions apart). In addition, the
auxiliary problems involved always appear simple. This is by no means
the case, however. It turns out that the solution of the unconstrained
extremum problem for the functional ®,(x) = f(x) + y,(x) becomes more
and more difficult as n increases (provided the minimum does not lie
inside 7). We shall illustrate this with an example of minimizing a
strongly convex functional f(x) under the one linear constraint (c,x)=0.
We introduce the penalty function y,(x) =X,(c,x)2, X, =0, lim K,, = oo.

h-»c0
We shall solve the unconstrained minimum problem for ¢,(x) = f(x) +y,(x)
by the gradient method and estimate the rate of convergence. Let x, be

such that (¢c,z:1) =0, lzil =1, and x, such that (c, x3) = A >0,

lzo Il = 1. Them, if (c, x) = 0, (®,"(x)zy, 1) = (f'(x) 1, 1) < M, and
(D7 (2) 22, 22) = (F7(2) %2, 72) + KnX2 = m + K, A2 Hence p, - 4 /m, =
(m+ Kn,A?) /M, i.e. p,— oo 88 n— oo, But the convergence rate is

determined by the number ¢n =~ 1—2/p,, so that ¢g,—1 as n-» oo,
In other words, the rate of convergence of the gradient method in the
auxiliary problem is slower, the greater n. The method of penalty func-
tions appears to be suitable only when other methods fail, or in order
to obtain an initial approximation for another method. Notice, however,
that, by employing penalty functions of the type (11.4), an upper bound
can be obtained for f*, and a lower bound by employing functions of the
type (11.1) or (11.2).

Trans lated by D.E. Brown
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