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(Received 24 Scptenber 1965) 

Introduction 

~~S~AI~~ extreme problems form a wide class of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproblems often 

encountered in pure and applied mathematics. We only need to recall 

examples such as linear and non-linear programming, the Lagrange problem 
in the calculus of variations, optimal control problems, problems of best 
approximation and variational problems for partial differential equa- 
tions. Each of these types was at one time considered in isolation. To- 

day, a general mathematical theory of extremal problems is being created 

on the basis of functional analysis. For instance, the scheme proposed 
by A.Ya. Dubovitskii and A.A. Milyutin [ll enables the necessary condi- 
tions for a minimum to be obtained in a unified way for all such prob- 

lems, starting with the duality theorem in linear programming and ending 

with the Pontryagin maxims principle for optimal control. Very general 

results have also been obtained regarding the existence and uniqueness 

of the extremum. 

In the present paper we consider another aspect of extremal problems, 

namely methods of solving them, from the same unified functional-analytic 
viewpoint. The methods are classified and theorems proved for certain of 

them. These general theorems are illustrated by some specific examples. 

Using this approach we are naturally prevented from considering many 

familiar methods which in essence use some specific feature of the 
particular problem (e.g. methods of dynamic progr~ing). This paper 
consequently makes no pretence at offering a survey of numerical methods 

of minimization. Our aim is to give as general a statement as possible 

* Zh. vjkhisl. Mat. mat. Fir. 6, 5, 787 - 823. 1966. 
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of certain methods which are in part familiar in computational practice, 

and to state precisely the conditions for their convergence, We pay 

hardly any attention to another important aspect of the problea, namely 

the computational side. But it seems to us that our purely theoretical 

results on the convergence of methods do in fact throw light on this 

aspect. Some discussion of this topic will be found in Section 12, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Notes on the mathematicd theory of extremal 
problems 

We devote this section to the math~atical theory that will be 

utilized below. A familiarity with the general ideas of functional 

analysis 12, 31 is assumed. 

All functionals and sets are considered below in a real Banach space 
F 4. 

As usual, we call the functional f(x) convex on 9 if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ((x + y),&) < 

% f(x) + Y f(,y) for all x, .y E Q (or strictly convex if the ineauality 
is strict). Throughout, we shall only consider continuous convex func- 
tionals. Hence the convexity condition can also be written as f (ax + 

(1 - a)y) <of(x) + (1 - a)f(y), O< a <l. Similarly, the set Q is 

called convex if z E Q for all X, ,y EE Q, where z = %(x + y), and 

strictly convex if 2 is an interior point of Q. The linear functional 
c E E* is called a support functional to f(x) at the point x if 
f(n + y)& f(n) f (c, y) for all y E E, and a support functional to Q 
at the point x if (c, x) q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c, y) for all y E c>. If the zero linear 
fictional is a support to f(x) at the point x*, then r* is a minims of 
f(x) on E. Here and below, B* is the conjugate space end (c, z) is the 

value of the linear functional c GE E* on the element x E E (in ~rticu- 
lar, the scalar product in Nilbert space). A convex functional f(x) has 

a support functional at auy point n. This support functional is unique 
and is the same as the gradient f’(n) if f(x) is differentiable (the 
Frkhet derivative is always ~derstood). With f(z) differenti~le, the 

convexity condition is equivalent to (f’(r) - f’(y), x - y) 30 for any 

x and y. If the convex functional ha6 a second derivative f”(x), then 
f”(n)y, y) ‘>rO for all x and y. Finally, a convex functional is weakly 
semicontinuous from below. 

Most results concerning the existence of an extremwn can be obtained 
from the following. 



Constrained minimization methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 1.1 

3 

A functional weakly semicontinuous from below has a minimum on a 

weakly compact set. 

In particular, It follows from this that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 1.2 

A convex functional f(x) has a minimum on any bounded closed convex 

set Q of reflexive space E. 

We quote an elementary theorem on the uniqueness of the minimum. 

Theorem 1.3 

If, in addition to the conditions of Theorem 1.2, f(z) is strictly 

convex, or if Q is strictly convex, while f(x) has no zero support 

functionals on Q, then its minimum Is unique. 

We now turn to the convergence of minimizing sequences. Since the 

successive approximations in many minimization methods do not in general 

satisfy constraints, it is worth introducing the following: 

Definition [41. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWe call nn E f?, n = 1, 2, . . . , a generalized minimiz- 

ing sequence (GM.9 for f(x) on Q if 

a) lim f(zn) = f’ = j.ni f(z), b) lim p (P, Q) = lim inf 11~ ~  - XII = 0. 
*-ME II-N-00 n+co zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxEQ 

Theorem 1.4 

In the circumstances of Theorem 1.2, we csn extract from any G MS a 

subsequence weakly convergent to the minfmum. In the circumstsnces of 

Theorem 1.3, any CMS is weakly convergent to the (unique) minimum. 

We shall be interested in cases where strong, as well as weak, con- 

vergence of the GWS can be proved. For this, we Introduce the following 

definition [4, 51. The functional f(x) is called uniformly convex If 

there exists a function 5(-r), 5(r) > 0 for T > 0 (which csn be assumed 

monotonic), such that f ((n + y)/2)< H(f (x) + f(y)) - 6( 11 x - y 11) for 

all x, y. This condition is equivalent to the following: for any x E E 

there exists a support functional c E E*  such that f (n t y) af(x) + 

(c, y) + ~(11 y II) for any .y. Further, we call a set Q uniformly convex 

if there exists a function S(T), 6(s) > 0 for T > 0, such that 
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(X + ,y)/2 + z E (! for any X, ,y EE Q and any Z: 11 z I\\( S(i/ x - y II). 

Finally, we call a uniformly convex functional (set) strongly convex if 

8(T) = y+, y > 0. Such functionals and sets have the following proper- 

ties. A uniformly convex function f(x) is bounded from below in E, while 
the set S = lx: f(z) < h) is bounded for all A. If, in addition, f(x) 
satisfies a Lipschitz condition on S, then S is uniformly convex. Every 
un~fo~ly convex set different from E is bounded. In finite-d~m~s~onal 
space every bounded strictly convex set is uniformly convex, while every 

strictly convex functional is also uniformly convex on any bounded set. 

If f(x) is differentiable, the uniform convexity condition is equivalent 

to (f‘(x) - f'(y), x - .Y)>W11 n - y 11). If f(n) is twice differenti- 
able, the condition for strong convexity is equivalent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf”(x)y, y) & 
yll y 112, y > 0, for all x, Y. 

Theorem I .5 

If c> is a closed convex set, and f(x) a uniformlv convex functional, 
then every G WS is (strongly) convergent to the (unique) minims X+ of 

f(x) on Q. Here f(x) - f(x*) 3 6( I/ n - x* II) for all x E Q. 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.5 

If Q is a closed uniformly convex set, and f(x) a functional weakly 

semicontinuous from below, with a unique minimum at the boundary point 

x* on 0, then every MS is (strongly) convergent to x*. In particular, 
if f(x) is a convex functional, having no zero support functional8 on Q, 
then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x) - f(x.*) 2 WI1 x - x* II), h ? 0, for all x E Q. 

As we shall see below, only a slight strengthening of the conditions 

of Theorems 1.4 - 1.6 is required for convergence of many ainimization 

methods. 

In many problems the admissible set Q is specified by Q = lx: g(x)&O). 
where g(n) is a functional. In connection with the concept of GVS, it 

is important to know when the condition ,g(xs) -. + 0 implies p(G, Cj)-+ 0. 

We call the constraint g(x) < 0 correct if this is true. It turns out 

that g(x)< 0 is correct in the following cases: (a) if E is finihe- 

dimensional, g(x) is continuous and S = {x: g(x)< e) is bounded for some 
E > 0; (b) if g(x) is convex, Q is bounded and there exists x* such that 
g(x*) >Oo; (c) if g(n) is convex and 11 g’(x) II> E > 0 for all x such 

that g(x) = 0 (here g’(x) denotes any support functional to g(x) at the 

point x; (d) if g(r) is differentiable, Q bounded, g’(x) satisfies a 

Lipschitz condition, and there exist E > 0, 6 > 0 such that 11 g’(z) 112~ 
for lg(x)l< 6; (e) if g(x) > 0 for all x (i.e. Q = Ex: g(n) = O)), g(x) 
is differentiable, g’(x) satisfies a Lipscbitz condition, and 
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II g’(x) II *> k:(x), h > 0; (f) if g(x) is uniformly convex. 

Notice that, if the initial problem is such that the GVS convergence 

cannot be said to be strong, yet at the same time good convergence to 

the solution is desirable in the sense of closeness in norm as well as 

with respect to the functional, the artificial device of A.N. Tikhonov 

regularization can be used to obtain a strongly convergent sequence [S, 41. 

In conclusion we dwell briefly on the necessary and sufficient condi- 
tions for an extremum. In the case of unconstrained problems, such con- 

ditions have been well known ever since the foundations of analysis and 
the calculus of variations were laid. They were later extended to the 
case of constraints in the form of equations (the method of Lagrange 
multipliers). But it is only recently that the necessary conditions for 

an extremum have been stated for problems of mathematical programming 

(the Kuhn -/ Tucker Theorem, [71) and for optimal control problems 

(Pontryagin’s maximum principle, see M). The necessary condition for 

a minimum was obtained by L.V. Kantorovich [91 in 1940 for the general 

problem of minimizing a functional on a set of Banach space. Recently, 

A.Ya. Dubovitskli and A.A. Milyutin [I] have developed a unified technique 

for obtaining the extremum conditions for a very wide variety of prob- 

lems. 

We shall use the conditions for a minimum of the functional f(x) on a 

convex set Q of Banach space E in the following form (x* is the minimum 

throughout what follows) : 

(a) if f(x) is differentiable, then 

(f(iq,J:- 5*) > 0 for all z E Q, 

i.e. f ‘(x*) is a support functional to Q at x*; 

(1.1) 

(b) If f(x) is differentiable and E Hilbert space, then 

a II f’(s*) II = min !I 5* - czf’(z*) - J: II for all a > 0, 
(1.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X.EQ 

i.e. the projection of the vector x* - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf ‘(n*) on Q is the same as n*; 

(c) if f(z) is convex and twice differentiable, then 

(f’(~‘),J:-z*) +i/z(fll(Z*)(2--*),5--*) 3 0, (1.3) 

or 
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rnnLw + (f’@‘) 9 x-xL)+‘/~(f~(xf)(x-xL),x-x*)]=f(x*). 

We shall see below that the method of gradient projection (Section 5) 

can be regarded as an iterations1 means of satisfying condition (1.2)) 

the conditional gradient method (Section 6) a means of satisfying con- 

ditlon (l.l), and Newton’s method (Section 7) condition (1.3). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2. Examples of extremal problems 

General nlinimization methods will be illustrated throughout this paper 

by examples, mainly from optimal control problems. We describe these 
problems in the present section and Indicate conditions ensuring the 

functional and set properties participating in the general theorems 

(smoothness, convexity, uniform convexity etc. ). 

1. The problem of mathematical progrsaxxing amounts to minimizing a 

function f(x) of m variables, x = (x1, . , . , xm) on a set Q specified by 

the constraints gi(X)< 0, i = 1, . . . , r. We shall often reduce differ- 

ent problems to a sequence of problems of linear (f(n), gi(n) linear) or 

quadratic (f(x) quadratic, gi(Z) linear) programming, for which the final 

methods of solution are well known [?, 101. 

2. The optimal control problem [81 amounts to minimizing the func- 

t lonal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

where the phase variables x(t) and control u(t) are COMeCted by 

(2.2) 

in the presence of certain constraints. We shall only consider problems 

in which the time T and the initial state n(O) are fixed, We assume that 

x(t) = (xl(t), . . . , r,(t)), u(t) = (ul(t), . . . , u,(t)), r<m. The solu- 

tion will be sought in the class of functfons u(t) E L,r(O, T), i.e. 
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This class of functions Is fairly wide (in particular, it includes all 

bounded measurable u(t)); on the other hand, the space I!,,’ is Hilbert, 

which is extremely handy for various methods of minimization. The nota- 
tion f(u) (and not f(x, u)) in (2.1) emphasizes that u(t) Is regarded 
as the independent variable, while x(t) is found (for the given u(t)) as 
a solution of (2.2). 

We note some important particular cases of the functional f(u): 

(a) F 5 0 is the problem of terminal state optimization (e.g. @(X(T)) = 

k(T) - dllm (b) UI = 0, F(x, u, t) = F(x, t) is the problelrl of best 

approximation of a given trajectory (e.g. F(x, t) = Ilr(t) -a(t)JJ& ) 

(c) dr = 0, F(x, u, t) = “(ti, t) is the problem of control power minimiz- 

ation (e.g. F(u, t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIlu(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII i,). 

An imoortant particular case of system (2.2) is the linear problem in 

which (2.2) becomes 

dX 
-=A(t)x+B(t)u, 
at 

x(0) = c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.3) 

where 4 (t ), E(t) are m x m and m x r matrices, continuously dependent 
on t. 

In the particular case when A(t) 3 0, E(t) = T (I is the unit matrix), 

we obtain the classical functional of the calculus of variations. 

We shall not quote the proofs of the following properties of the 

functional f(u). since they are quite laborious and of little interest. 

a. Let Q(X, U, t) satisfy a Lipschitz condition in x and u for all 

x, u, t (i.e. for instSZICe, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIq(Xii , u,, t ) - Cp(Xz, U, t ) 11 E,< KilXi - X211 E,,, 

where K is independent of u and t; other conditions of this type will be 

understood similarly). Let Q(x) and F(x, u, t) satisfy a Lipschitz con- 

dition in x on any set bounded In x and let IF(s, u f ii, t) - P(z, zz, 

t) 1 < ~blle, lldl E, + fi l ldl  ;, (implying that F(n, u, t) satisfies a 

Lipschitz condition in u on any set bounded in u and that F(n, u, t) as 

a function of u is increasing not faster than quadratically). Then f(u) 

is a continuous functional, satisfying a Lipschitz condition on any 
bounded set. 

b. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(X, U , t ) have partial derivatives with respect to % and IL, 
satisfying a Lipschitz condition and bounded for all x, u, t, while 
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F(x, u, t) has partial derivatives with respect to n and u satisfying a 
Lipschitz condition on any set bounded in x. Finally, let Q(x) be differ- 
entiable and its gradient satisfy a Lipschitz condition on any set 

bounded in X. Then f(u) is differentiable, its gradient satisfies a 
Lipschitz condition everywhere, and has the form 

f’(u) = h(t) = Fu - cpu’q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2.4) 

where y(t) is the solution of the system 

as -= 
at 

- cpx’$ + Fx, q(T)= -@‘(z(T)) 

(here, as throughout what follows, the subscript denotes differentiation 
with respect to the corresponding argument, and the asterisk the con- 

jugate operator, in this case the transposed matrix). 

Notice that the necessary condition f’(u) = 0 for a minimum in the 

unconstrained problem is none other than the classical Euler-Lagrange 
equation for this problem in the integral form. Notice also that f’(u) 
is connected with the function .Y(x, u, t, y) of Pontryagin M by the 
simple relationship h(t) = - $. 

All further properties of f(u) are quoted for a linear system (2.3) 

only. Unfortunately, we know of no extension of them to a non-linear 

system. 

c. If F(x, u, t) is continuous with respect to {x, u), measurable 
with respect to t, convex with respect to u, while 0(x) is continuous, 
then f(u) is weakly (and hence strongly) semicontinuous from below. 

d. If F(x, IL, t) is convex with respect to lx, u), and CD(x) convex, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f(u) must also be convex. 

e. If, in addition to property d, F(x, u, t) is uniformly (strongly) 
convex with respect to u (more precisely, if F((xl + x2)/2, (ul + uZ)/2, 

t) G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%F&, ZQ, t) + i/zF(52, u2, t) - 6(lh - ~4) for my xlt xzr ul, 

u2, t, then f(u) is a uniformly (strongly) convex functional. 

Properties d and e can be substantially improved [51, Theorem 10. 
where this is done for the elementary variational problem). 

f. If F(x, u, t) is twice continuous differentiable with respect to 

In, u), and 9(x) twice differentiable, then f(u) is twice differentiable 
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and its second derivative f”(u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(2.5) 

(f”(U)iZ, ii)’ 1 [(LZ, 5)+2(fLLz, E)_t(F,,E, U)l~t+(@“z(q> Z(T))* 
0 

minimization niethods 

is 

where d5 / dt = AZ + Bii, 55 (0) = 0. 

g. In connection with theorems 1.3, 1.4, 1.6, it is important to know 

in what cases f’(u) = 0. We call system (2.3) non-degenerate if R*yr z+ 0 

in any interval from [O, ~1 for any non-zero solution of the system 

dy/cit = - A*y. This condition means, in particular, that any point x(T) 
can be reached from the initial point x(0) = 0. Let the system be non- 
degenerate and any of the following conditions be satisfied (for all 
admissible u): la) F = 0, CD‘ # 0; (a) clt = 0, F, +k 0 on any interval 

F, = 0; B) f-D = 0, F, = 0, F,, + 0 on my interval. Then f’(u) # 0 for 

all admissible u. 

We now consider the various types of constraint encountered in optimal 
control problems: 

(1) Qi = (u: u(t) E Mt for almost all 0 < t < T); ,il, is a set of 

E,. For example, Qi = {u: ai < m(t) sg h(t)}; 

cz) Qz={u: j G(u(t),t)dt<h}; the case G(u, t) = 

0 

Or G(u,t) = fRu(t), U(t))Er, is often encountered, where R is a posf- 

tive definite matrix; 

(3) q3 = {zz : r(t) E St for all 0 < t ,( T}, St c Em; particular 

cases of this constraint are z(T) = d and q(x(t)) <IO for all 

0~ t < T, Q(X) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa function of m variables. 

Constraints of a rather more general kind are also possible (for 

T 

instance, 
s 

G(z,u,t)dt<a or {z, u} ENS for all O<t<T, 

0 

Nt c Em+?). We shall not consider them, since it would add to the com- 

plexity of the analysis without introducing auyttring new. 

We quote the properties of the sets Q1 - Q3. 
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a. If M, is convex for all t, then (Q1 is convex. If G(u, t 1 is convex 
with respect to u for all t, then f12 is convex. If ,St is convex for all 

t, and the system linear, then QB is convex. 

b. If Yt is closed for almost all t, then Q1 is closed. If G(u, t) is 

cant inuous with respect to u and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIG(u, t) f > allull& + f3 for all t, 

then Q2 is closed. If .C, is closed for all t, and the system linear, 

then Q3 is closed. 

c. If .Mt is uniformly bounded in E,, then Q1 is bounded. If %(zz, t) ,I 

YllU iI&. for large MLr and all t, then Q2 is bounded. 

d. If Mt + E,, then Ql is certainly not uniformly convex (and does 

not even contain interior points). Xf I;(u, t) is uniformly (strongly) 
convex with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu for all t (with a function S(T) independent of 

t), then Qz is uniformly (strongly) convex. 

e. The set QS can be specified by means of the functional Qg = 

{u : g(zz) < 0). We prove this in three particular cases. Let 0’ = (a: 

qi(r(t)) < 0 for all O< i<‘f). We can now take gi(u) T0;z 4i (z(T) ) * 
. . 

If Q”  = {u : f&(x(T)) < 0}, we can take ~2(u) = &(x(T)). Finally 

if o”‘= {U : x(T) = d}, then g3(n) = llz(Z’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-d li&. 

We give the conditions under which the constraints gi(u) < 0. i = 1, 
2, 3, are correct. Let system (2.3) be non-degenerate. Then g3fu) is a 

correct constraint, while gl(u), gg(n) are correct provided the qi(X) 

are convex and 0 < E < IIqi’ll < c for qi = 0, i = 1, 2, and in addi- 

tion qi(z(0)) < 0. In particular, the linear conditions (a(t), 

x(l))E < A(t), 0 < t 4 T, and (a, s(T)) \( h lead to correct con- 

straints. 

3. In addition to finite-dimensional and optimal control problems, 

there is a vast number of extremal problems connected with partial 
differential equations. We shall not discuss these, since they cannot be 
stated in as general a way as problems with ordinary differential equa- 
tions. The methods considered below c8n nevertheless be readily applied 

to many concrete problems of this kind (in particular, to those dis- 
cussed in [ll. 441. 
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3. Classification of the methods 

In the general form our problem is to minimize a real function f(x) 

on some set Q of real Banach space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Most of the methods for solving 

this problem seem to fall readily into the following grouns. 

1. ‘Vethods of feasible directions 

In these methods we obtain a minimizing sequence of points x0, . . . , 

x”, . . . . all of which belong to Q. The functional and constraints are 
approximated at each point, and the new point obtained by solving an 
auxiliary problem. This group includes the gradient projection, condi- 

tional gradient and Newton methods discussed in Section 5 - 7. There are 

other methods of this type, which are described for the particular case 

of mathematical programming in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Al. 

2. Vethods of set approximation 

In these the set Q is approximated by a sequence of sets Qn, for each 

of which the problem of minimizing f(x) on Q, is solved. Generally speak- 

ing, it is not essential for Q, c Q. Examples are the Ritz and cut-off 
etc. methods, discussed in Sections 8 - 10. 

3. ‘Methods of penalty fwwtions 

These methods amount in essence to reducing the constrained to an 

unconstrained extremal problem, by imposing a “penalty” on the initial 

functional for infringing the constraints. These methods are dealt with 

in Section 11. 

4. Dual it.y methods 

We include in this group the methods in which an iterative process is 

found for selecting the linear functlonals (“dual* variables), figuring 

in the necessary conditions for an extremum. We shall omit these methods 
here, since it has not yet proved possible to state them in a general 
enough form. Several methods of this type are described, 88 applied to 

finite-dimensional problems, In [12 - 141. 

This classification is not conventional and naturally has defects. In 

particular, some of the methods used for concrete problems need stretch- 
ing to fit into one particular category. Also, a method can sometimes be 
classified differently according to the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof view. 

Other criteria can be used for classification. For instance, we can 
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group methods according to the highest order of functional derivative 
employed; e.g. the gradient projection method is of’ the first order and 
8ewton’s of the second. Further, we can call a method kastep if k 
previous iterations are used to obtain the next. Most of the methods dis- 

cussed here are one-step (Sections 4 - 7) or null-step (methods of 

penalty functions (Section 11) or Ritz methods (Section 9), while in the 

cut-off method all the previous iterations are used to obtain the next. 
We cau also classify methods as stationary or non-stationary, according 
to whether the method of obtaining the n-th iteration depends on n or 

not;. Finally, we only consider discrete methods (i.e. those in which an 
iterations1 sequence xa is formed), though many have continuous analogues 

(i.e. we obtain a trajectory x(t), described by a differential equation), 

The point is that, for the numerical realization of continuous methods, 
we find ourselves using finite-difference methods to solve the differ- 

ential equations, i.e. in essence we move over to a discrete method. How- 
ever, continuous methods can be used e.g. for solving problems on 
analogue computers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4, Methods of finding an unconstrained extremum 

It seems worth discussing the case of an unconstrained extremum sepa- 
rately, since, firstly, rather more precise theorems can be proved here, 

and secondly, it is worth stating explicitly the methods whose analogues 

are used below for finding constrained extrema. 

We shall only be concerned with one-step discrete methods, i.e, those 
in which an iterational sequence of the type 

is constructed. 

We start with methods of the gradient type. We mean by this phrase 

that the direction of motion r”,(xn) is in some sense close to the 
gradient (see conditions (4.3), (4.4) in Theorem 4.1). Theorems 4. t - 

4.2 are an extension of the results of [L51, where a gradient method in 
the strict sense of the word was investigated in Hilbert, space, i.e. 

zn+i = xn - &$‘(zcn), Un 2 0. (4.2) 

In finite-dimensional space the idea of this- method goes back as far as 
CtWChy . 

We shall not give the proofs here, since they follow the same lines 
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as in [151. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 4.1 

Let f(x) be bounded from below on E: inf f(x) = f” > -cm , and 
XfZE 

differentiable, with f’(x) satisfying a Lipschitz condition with con- 

stant V, and let 

ltp, (4 II G mf’ (4 II, (4.3) 

(f’(2);Pn(z)) > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&llY(4 It Kz > 0. (4.4) 

0<ei<a,+e2’ E* > 0. 
i 

(4.5) 

for all n. Then, whatever the ~0 in the method (4. l), we have f(~~+~) < 

j(P), lim f’(zn) = 0. If, in addition, f(x) is convex and {z: f(x) < 
lt+CO 

f(x”)} bounded, then lin; j(P) = f’. 
7t-kW 

In particular, if E is a Hilbert space and P,,(x) = f'(x), then con- 

ditions (4.3), (4.4) are satisfied for K, = K, = 1, so that Theorem 4.1 
gives the convergence conditions for the gradient method (4.2). 

To ensure the existence of a minimum and convergence of the sequence 
xn, extra restrictions must be imposed on f (x1. 

Theorem 4.2 

In addition to the conditions of Theorem 4.1, let 

IIf’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII2 3 h[f(z) - f’l9 h > 0. (4.6) 

Then the sequence (4.1) is convergent to the minimum at the rate of a 
geometric progression. 

The conditions of the theorem only need to be satisfied in a neighbour- 

hood of x*. Notice also that condition (4.6) does not demand the con- 

vexity of f(n) and does not guarantee uniqueness of the minimum. In 
essence, it merely means that, if the gradient is small at some point, 
then f(x) is close to its minimum at this point. This condition cannot 
be extended to the case of a constrained extremum. 

If we replace (4.6) by the stricter condition for strong convexity 
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and confine ourselves to method (4.2)‘ it better estimate of the con- 

vergence rate c&n be obtained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 4.3 

Let E be a Hilbert space, and f(x) twice differentiable, where, for 

all X, y, 

Then, with a, _ = ~a, 0 ( a < 2 /M in method (4.2) 11~~ - ~‘11 & 

ll~O-~*Ilqn, y=max{(l--Ml., II---am]}, q is minimal and equal to 

(M-vsm)/(M+m) for a=2/(M+m). 

As above. the conditions of the theorem only need to be satisfied in 

a neighbourhood of x*. 

The gradient method is often suitable in problems where at first sight 
there appear to be restrictive equations. Let E,, E,, E, be Hilbert 

spacee,x E E,, y = E,; our problem amounts to minimizing f(x, y) on 
condition that P(x, y) = 0, P is an operator from E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E, into E,. Yiie 

shall assume that, given sny fixed X, the equation P(x, y) = 0 has a 

unique solution y(r). Now , instead of solving the initial conditioned 

extremum problem, we can seek the unconstrained minimum of the function 
0(x) = f(z, .y(x)). There is no need at all to find the function y(x) ex- 

plicitly here. In fact, the gradient of the functional 0(x) is CD’(x) = 
fx - [P,‘]-iPx. Hence, the gradient method has the form 

(4.8) 

In other words, we only need to be able to find ,y(&l). This approach 
is well known, see e.g. LlS]. In essence, we use it when, in the optimal 

control problem (1. I), (1.2) we take only the one independent variable 

u(t), instead of the two n(t), u(t) connected by equation (1.2). 

Another im~rtant class of minimization methods includes those of 
Newton’s type. Newton’s method for minimizing f(n) is 

pf’ = tn - [f”(z”)]-y(P). (4.9) 

This method can be interpreted in two ways. Firstly, as the Newton’s 

method for solving the equation f’(x) = 0. Hence all the conditions for 
convergence of method (4.9) (in particular, Theorem 4.4) can be obtained 



Constrained minimization methods 15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

from the familiar c2, 171 convergence conditions for Newton’s method for 

solving equations. Secondly, if we approximate f(x) by a quadratic func- 

t;oF, 
?I 

;t the point xn f(z”) + (f’(~), 5 - zn) + i/~(f”(~n) (5 - P), 
, its minimum point will be the same as xn+l in (4.9). We shall 

use this interpretation when extending Newton’s method to the case of 

constrained problems. 

Theorem 4.4 

Let condition (4.7) be satisfied, and in addition, let f “(xl satisfy 

a Lipschitz condition with constant R. Then the sequence xn in method 

(4.9) is convergent to the minimum x* at the rate 

where 6 = 2 11~~ - z?!/ 
m 

(assuming that 6 < 1). 

There are methods intermediate between the gradient and Newton’s 
methods, when part of the dependences are approximated linearly, and 
part quadratically. For instance, when minimizing cp(P(x)), where x E E,, 

is a non-linear operator from E, to E,, Q(y) is a functional in E,, we 

can approximate Q(y) quadratically, and P(x) linearly. We then obtain 

the method [MI 

(4.10) 

z”+i = 2n -  [P”(z”)cp”(P(s”))P’(sn)]- ‘P’“(~~)c$’(P(z~)). 

In the above problem of minimizing f (x, y) under the condition P(x,,y) = 0, 

we can linearize P(x, y) and approximate f(x, y) quadratically. We then 
get the method 

(4.11) 

xn+i = 2” --  [La + fvll (P,- ‘PX) ‘P,- ‘P, -  fJcyPy-iPXl --i (f*P,- ‘/a? + fs) . 

But the convergence conditions for (4.11) are unknown. 

We now illustrate the concrete form of the above methods for differ- 
ent examples. The convergence conditions .for each follow from the above 
theorems and the properties of funct ionals given in Section 2. 

1. When minimizing the finite-dimensional function f (xl = f (x I,. . . ,x,) 

the gradient method (4.2) becomes 

n+i 
Xi 

af (x”) 
= xp -  an - 

axi ’ 
i= ,...,m. 1 

(4.12) 
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The nore general methods 

n+f . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8fW) 
Xi = xi% - an2 - , 

dXi 
i=l,...,m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.13) 

can be regarded as realizations of method (4.1). In Newton’s method 
(4.9), f “(9) is the matrix of second derivatives; at each step of this 

method, therefore, we have to find this matrix and solve a system of 

linear algebraic equations. 

2. In the case of the optimal control problem (2. l), (2.2), the 

gradient method (4.2) becomes, in accordance with the expression (2.4) 

for the gradient 

u”+‘(l) = Un (t) - on [Fu - %*~I, 
(4.14) 

where all the qusntities occurring here are evaluated on the trajectory 

corresponding to u”(t). 

A more general method of the type (4.1) is obtained if the constants 

an>0 are replaced by the functions a,(t) 20 in (4.14). 

The method (4.14) seems to have been first applied by Stein [f93 to 

the elementary variational problem; see also [151. It was proposed for 

the general optimal control problem in [20 - 231. Elementary theorems on 

convergence of this method are only to be found in [231. It follows from 

Theorem 4.1 of the present paper that, if the conditions given in Section 
2 are satisfied, in which the gradient of f(u) exists and satisfies a 

Lipschitz condition, while F(z, u, 1) 2 hi and Q(Z) >, ?Q, then we 

have ~(~~~*~ < f(zP), and f’(un) --t 0. in method (4.14). Theorem 4.3 can 

be applied for the linear problem (2.1). (2.3)‘ and a result obtained on 
the convergence of un to the solution. 

We now consider Newton’s method for the linear problem (2. l), (2.3). 
In accordance with expression (2.5) for f”(u), at each step of Newton’s 
method we have to minimize the quadratic functional 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4.15) 

+ +Fuuii, ii 
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where cG / dt = kr + Bii, .Y (0) = 0. 

Accordingly, Newton’ s method becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

un+‘(t) = UT (2) + Fuu-i(Fu - 2F,,f - B’g), (4.16) 

where x(t), y(t) is the solution of the linear boundary-value problem 

CE 
-  = AZ -  BFuu+ (F, -  2F,,Z -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB’$) , 
dt 

d* 
-  = -  A’$ + F, + F,,z + F,,F,,-i(P, -  2F,,5 -B’s), 
dt 

Z(O) = 0, ql(T) = - af’E(T). 

Finally, the mixed method (4.11) for problem (1. l), (1.2) has the 

same form as (4.16), if 4 and 8 in (4.16) are replaced by qx and qU 
respectively . 

Newton’s method was proposed for the elementary variational problem 

in [I91 ; we are not aware of sny previous application of it in the 
literature to the optimal control problem (method (4.15)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. Gradient projection method 

We turn to methods for solving constrained problems. 

The gradient projection method, for minimizing the differentiable 
functional f(x) on a set 0 of Hilbert space E, amounts to forming the 

sequence 

.P Cl = PQ (zn -  any (2”) ) ) 
(5.4) 

where PQ is the operator of projection on to Q (in other words, y = PQ(X) 

is given by y EQ, Ily --zll = inf ll~:-zll). If (2 = E (i.e. we have the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ZtsQ 

unconstrained problem), method (5.1) is the same as the gradient method 

(4.2). A curious point is that the more general method (4.1) does not 
similarly extend to constrained problems. The necessary condition (1.2) 
for a minimum is satisfied at a stationary point of method (5.1). 

A general theorem on the convergence of this method is 
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Theorea 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Let 0 be a bounded closed oonvex set of Hilbert space 7, ffx) a 

functional differentiable on cfr where f’rr> satisfies a Ligschitz condi- 

tion with constant V, and 0 < ci < ~a, < 2 / (H + 2s~) ) 82 Z 0. Then 

sequence f5.l) has the following properties: 

(1) f(nn) is monotonically decreasing and lim I/P+1 - ~“11 = 0; 
?I-lCU 

(21 if f(x) is Comwx, then 

~~~~~(~~) = f’ = i~~~(~~~ 
n-+03 ==2 

where f(x”) -. f” 4 c/n, and a subsequence of xn 

vergent to the minimum z*; 

exists, weakly con- 

(3) if f(x) is strictly convex or Q is strictly convex, wblle 
f’(x) # 0 on 0, then x fi is weakly convergent to the (unique) minimum x*; 

(41 if f(zl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunifo~ly convex or Q is ~iform~ convex, whife 

f’(x) f 0 on Q, then x * is strongly convergent to x*; 

(5) if f(x) is twice differentiable, where m il y II2 < (f”(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, y) zg 

M II y II” , n > 0 for all x E 0 and all y. then, with c+,, 3 a, 0 < (X < 

Z/U, sequence (5.1) is convergent to x* at the rate of a geometric pro- 

gression: #z*--s+jl <Cf~~~e)fq-+ie)~, where g = max (fl-amI, 

il -&j), 0 < 4’< 1, E > 0 is arbitrary. o is minimal and equal to 

(M--)/(M+m) for a=Z/(M+m). 

h-oaf, We notice first that, since 9 Is convex and closed, the oper- 

ator PQ(x) fs uniquely defined for all x, Further, 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf’(zR), xn+i -LP)dz < (f(xn), x*+1 -x”)f] IIfqr~+z(~~+~--x~))- 

0 

- f’fx”) If llxn+r -xmlld~~(r(xn),xR+*-xn)f_ 2 51 x”+f-Pp= 
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+ M_llxn+t - xn112 < 
2 ( -& +“,) Ip+i - ~qp & - E21it*+i - xnli2 < 0 

(Here, we have used the fact that (z- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPQ(z), y - PQ(z)) < 0 for all 

y E Q. Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (xn) is monotonically decreasing. Since the boundedness of 

Q and the Lipschitz condition on f’(n) imuly that f(x) is bounded from 

below on Q, we have limf(P) exists, so that II x?I+~ - tn 112 < [f(zn) - 

f(~?+~)] / e23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 as ZZ’c0; 

Further, if f(x) is convex, a minimum X* must exist, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (x’) = f*. Since 

f(x) is convex, 

0 < f(P) - )’ < (p(x’q, xn -- x*) = (f’(xn), xn - x”+i) + 

+ $(xn - anfyx”) - xn+i, x* - xn+i) - .$(xn - x”+i, x* - xn+y < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

< llf’(xn) IIllxn+i - xnll+ ;llxn+i - xnll 112. - xe+q < 

< f \ 
IIf’ ll+ ‘ii,* - x~+~II > IIxn+l - znll. 

Since the expression in brackets is bounded, and II xn+l - xn II + 0 by 

what has been proved, we have f(xn) --t f’ as n---c co. We now consider 

the rate of convergence. Let q,, = f(P) - f*. From the last inequality, 

%I < h II 5” - xn+* II, while we found above that qcp, - q~,,+i > ~2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII zn - 

xn+i II’ . He nc e  q h - q n+t 2 wnT. We consider the numerical sequence 

Pntl = Pn - PPn 2. If p. is small, we know [24] that pn Q c/n. But, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q~< pn and Q,, is small, then q,,+i < cpn - pqQ2 < P~ +~ . SinCe, by 

what has been proved, l&q,, = 0, then (P,, -< pn < c /  n for all reason- 

ably large n. The last part of the second assertion of the theorem, and 

also assertions 3 and 4, follow from Theorems 1.4 - 1.6. 

Finally 

~~1~ _ x”+! 112 = (p - crf’(~n) _ gn+i, xn _ gn+i) + 

+a(f’(x*), xn-x*+q < a((f’(x”), x”-xn+‘) = 

= a(f’(xn-i) + A (xn - x--1) + r, xn - xn+‘) . 
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Here, A = )“(x~--~), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = j’(C) - j’(~?-~) - f”(sn-*) (39 -z~-~), llrl[ = 

o( /I zn - 9-I 11): l is the unit operator. Thus, 

il x” __ x17+1 112 < (xn-1 _ af’(xn-‘) _ xn, xn+i - x”) + 

+- ( (I - aA) (5” - x”-~), x~+~ - xn) + a (r, x” - xnfi) S 

< ()I I - aA II i/ .P - xn-1 II + II r II) II xq1+i - xn II S 

< ( max 11 -oa;L) Iixn-xn--iII + Ilrll) llx~n+i-xnII C 

mQL,<M 

< (q li xql - xn--i Ii + II r II) ll xn+l - 5” II. 

Hence 

llxn - xn+‘ll < qllxl’ - x~-~II + llrll = (q + 6,) llxn - x72-1l(, 

where 6, = llrll / il.P - ~~~-111 -+ 0 as r2 --f 00 (since IixyL - ~~-~ll-3- 0). 

which proves the last assertion of the theorem. 

Votes. 1. The assumption in (4) and (5) of Theorem 5.1 that ? is 
bounded is superfluous. 

2. In (5). it is sufficient to require that the functional be strong- 

ly convex and uniquely differentiable. We have confined ourselves to the 

case of a twice differentiable functional since this simplifies the 
proof and enables a better estimate of the convergence rate to be given. 

3. In the case of unconstrained minimization, method (5.1) is the 

same as (4.2), and (5) of Theorem 5.1 becomes similar to Theorem 4.3. 

4. The estimate of the convergence rate in (2) cannot be improved. 

5. ‘While the present paper was in the press, [251 appeared, in which 
the same method is considered and similar results obtained; but no con- 
vergence rate estimate was given. 

We now see what aspect the gradient projection method takes on in 

various concrete problems. We shall not write down its convergence con- 

ditions in each case, since they can be obtained from Theorem 5.1 and the 
properties of functionals and sets described in Sect ion 2. Notice that 
many of the methods described below have been used in computational 
practice, though their convergence has not been proved. 

1. The finite-dimensional problem min f(x), n = (xl, . . . , XT,), under 
the constraints ai < xi < bi, i = 1, . . . , m. Method (5.1) becomes 
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’ ai. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a f 

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXin - Cl,, __ 

i3Xi 
< ai; 

?l+i 
af if Xi = 8 Xin- OL,,pm, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

af 

dXi 

lZi < Xi” - a,, - < 5i3 
dXi (5.2) 

bi. if xin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a 
af 

Yg 
> bi. 

2. The problem of non-linear programming with linear restrictions: 

min f(x), x = (x1, . . ., x,), under the constraints itx < b, b E E,, 4 is 
an m x r matrix. Here, at each step of method (5. I.), we have to solve the 

problem of quadratic programming 

ruin Ii zn - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanf’(xn) - 5 112, 
Ar<b 

Notice that Rosen’s gradient projection method [2R1 differs from the pre- 

sent (e.g. the points xn and &l do not need to lie on one face of the 

polyhedron, as in Rosen’s method). 

3. The problem of min f(x) under the constraints 4x = b, where n E E,, 

b E E,, E,, E, are Hilbert spaces, 4 is a non-degenerate (i.e. 4E, = E,) 
bounded linear operator from E, onto E,. Method (5. I) now becomes 

xn+* = x7‘ - ai,j’(xn) - A”(ALI*)-~A (39 - a,f/(xn)). (5.3) 

Incidentally, (5.3) can also be regarded as a gradient method for an un- 

constrained extremum, if we regard the subspace 4x = 0 as an independent 
Hilbert space. If, in particular, the constraints are specified by means 

of a finite number of linear functionals (ci, z) = pi, i = 1,. . . , rn; where 

clr ***I cm are linearly independent, then method (5.3) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(5.4) 
pl+i = p - an (G, SO) = pi, i= l,...,m, 

where the hi satisfy the system of linear algebraic equations 

&(ci, Cj)= -(cj,P(z”))r i= C...,m. 

i=i 

In particular, in the linear optimal control problem (2. l), (2.3) with 
fixed values of x(T) = d (we ten naturally assume 0 3 0 here), the con- 

dition n(T) = d is equivalent to specifying the values of m linear func- 
tionals of u. Hence method (5.1) becomes 
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zP+i (t) = u”(t) - U, (.F= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB-g  j , (5.5) 

where v(t) is the solution of the linear boundary-value problem 

a* 
$==: -A’$+&, ~$=As+B(z+-B**), X(O)= E(T)= 0, 

and the condition x0(T) = d has to be satisfied for u”(t). 

4. For the problem min f(n) under the constraint g(x) g 0, where f, 
g are convex differentiable functionals in Hilbert space, method (5.1) 

becomes 

pi-* = -C 
xn - anP(xn), if g(x” - C.&J (X”)) G 0; 

f, if &7(x” - anfl (P) ) > 0; (5.6) 

where 2 is found from the conditions; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Xn - cf(x~~) - ii! = &g’(f), x 2 0, g(z) = 0. 

For instance, if the restriction g(x) g 0 is linear, (c, X) <F, then 
Xzxn_ anf ’ (xn) - hc, where h is obtained from the condition (c, x) =p. 

If the constraint g(x) < r) has the form /xll < p, then f = fl[sn - 

CZ,~‘(~‘~)) : ilzn - a,f(P) 11. Method (5.8) can be used for the optimal 

control problem in which one of the following constraints is present: 

or, more generally, 

In the case of several differentiable constraints gi(X) < 0 we have 

to solve, at each step of method (5. I), a finite-dimensional problem of 

mathematical programming (quadratic programming if the ai are linear). 

5. The optimal control problem (2.1). (2.2) under the constraint 
u( t ) E M, for almost all 0 < t sg T, where .Mt is a convex closed set of 
Er for all t, can be solved by method (5.1) in the form 

nn+i ( t) = u”(t) -P&&t (U”(t) - Qnf’(?Zn)), (5.7) 

where f’(u) is given by (2.41, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPgt is the operator of projection 
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onto V, in E, (for each t). In particular, if the constraints are 

ai(t)<Ui(t)<bi(t), i = 1, . . . . r, then 

i 

&(t), if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW(t)< ai( 

PM,@(q)lf = e(t), if G(t)< U(t)< hi(t); (5.8) 

hi(t), if ui(t)> k(t). 

R. Let Q1, .I2 be closed convex sets in IIilbert space, Q1 being 

bounded. Then there exist X*E ol, y* E Qz, such that 

IIs’-y”II = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(Qi,Qz) = inf Ilz-~11, 

i.e. x* = Pg,(.Yf)* Y * = PQ~(x*). If Q1 or Q2 is strictly convex, while 

Q1 n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ1 = 0. then x*, y* are unique. The problem of finding x*, y* is 
equivalent to the problem of minimizing 

f(x) = p2 (Z Qz) = /I 5 - PQ,b) Ii2 =uFi, II x - y iI2 Ha Q,. 
1 

We consider the gradient projection method for this last problem. It 

can be shown that f(n) is differentiable, f’(n) = 2(x - PQ*(x)), f’(x) 

satisfies a Lipschitz condition with constant 2. Applying method 5.1 

with a, = %, we get 

z?i+i = pQ,(pQ,(x"))* (5.9) 

Thus the method amounts to successive projection onto 0, and Q1. Since 
f(n) is convex, we find from (2) of Theorem 5.1 that, for (5.91, 

lim 11 3” - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPQ,(x”) 11 = 11 x* - y’ 11. 

n-+02 

If Q1 or g2 is strictly convex, while Q1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn O2 = Q, we can apply (3) of 

Theorem 5.1, so that xn ‘,” x*, %,(rn) “,” .y*. Finally, if Q1 or OS is 

uniformly convex, 

(5.9) will follow 

and Q1 fl Q1 = Q, the strong convergence of method 
from (4) of Theorem 5.1. 

6. Conditional gradient method 

The essence of this method for mlnlmizing a functional f(x) on a set 
‘2 is as follows: we linearize f(x) at the point xn at each step, solve 
the auxiliary linear problem of minimizing (f ‘(xn), x) on Q, and deter- 
mine the minimum n’” in this problem from the direction of the movement 
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to obtain the next approximation. Thus, 

Theorem 6.1 

Let Q be a bounded closed convex set in reflexive space E, f(x) be 

differentiable on Q, where f’(x) satisfies a Lipschitz condition with 

constant V, and let a, = min (I, yR (f’fz”), ZE* - P) / 11 P - fm 112}, where 

xn is defined in (6.11, and 0 < ~~~~~ <(2 - E~)/V, ~~ > 0. Then the 

sequence (6.2) has the following properties: 

(1) f(xn) is monotonically decreasing and lim (f’(sn), xn - 2”) = 0; 
l- 

(‘21 if f‘(z) is convex, then Jim f(xn) = f’ = inf j(z), where f(xn) - 
R-=0 XEQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f*<c/n, and a subsequence xn exists, weakly convergent to the minimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V. 

x I 

(3) if f(x) is strictly convex or Q strictly convex, while f’(r) f; 0 

on Q, then P is weakly convergent to the (unique) minirnuiil .x*; 

(4) if f(n) is uniformly convex or Q uniformly convex, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ‘(xl f 0 
on :Q, then xn is strongly convergent to x*; 

(5) if f(x) is convex and jj’(z) )I 2 E > 0 on Q, while Q is strongly 

convex, then xn is convergent to x* at the rate of a geometric pro- 

gression. 

&oof. We observe first that, by Theorems 1.2, 1.3, the point En in 

(6. lj exists (and is unique, if Q is strictly convex). 

Just as in the proof of Theorem 5.1, we get 

f(xn+i) - j(e) < (f’(xn), xn+l - m) + $ llxn+i - xn 112 = 

Mu*2 
= --a, (f’(xn), xn - P> + 2 llxn - 2% 112. 

If 1 <~,(~'(z~),Ic~ -2") / (1~~ - Pl12,thenan = land 

f(xn+‘)-f(xn)< -(f’(z”),x~-P)+- ; JIxn - in 112 = 
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If 1 2 yn UW) 7 
Xn - z-“) / llXn -- ??(lz, then 

In both cases, f(xn+l) < j(i.9, i.n. f(xn) is monotonically decreasing. 

Since f(x) is bounded from below on ,! (by virtue of the Lipschitz condi- 

tion on f’(x) and the boundedness of Q), there exists limf(P), i.e. 

6, = f(xn) - f(xh+l) + 0 as n -. Q). But (f’(xh), %h - 3) < 2Sn/e2 in the 

first case and (f’(S), rP - ?) < (2$,R2/~~)” in the second 

(ri = sup 115 - gII)_ Hence, in both cases, Em (f’(P), 5% - P) = 0. 
%WZQ Ii-r* 

Further, if f(x) is convex, there exists x*, f(~*) = f* and O<.f(xn) - 

f*Sg (f’(xq, X” - X*) = (f’(Xh, Xh - X”) + (f’(x”), xn - n*) < 

(f ’ (x”) ) xn - P) . It now follows that lim (f (zn) - f’) = 0. We estimate 
n-%x 

the rate of convergence. Let f (xn) - f* = Q~, when 6, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQn - Q& l. As 

was shown above, (f’(zn), P - Zn) < max {2(rpn - (pn+i) / EZ, .K(rp, -.-. 

%+i)“z> < rr(cp, - (Pn+ip for large n. On the other hand (see above), 

cp, d (f’(.P), 5% -Z”). Combining these inequalities, we get q:n2 & 

EL2 (rpn - %+i) , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.e. (pn+i < rp, -- fpnL!/K2. Hence we obtain, as in the 

proof of Theorem 5.1, tp,<c,/n. The final assertion of (2) of Theorem 

6.1. and also (3) and (4). follow from the general Theorems 1.4 - 1.6 

on minimizing sequences. 

We turn to the proof of (5). Using the strong convexity of (3, we get 

- (f’(P), xn - P) = 2 
( 

y(P), Zn ; En- h ,,;yJ) ,, Ilf” - xn I$ + 

.f’(xn) 
+ 2 (W~?~~~~ jjP - f” (12 - xn 

) 
a z(f’(~“),~“)+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-I- NIP (3-3) II IF -r”ll”--2(f’(x”),59> z(f’(s”),P-P)+ 
+ 234 li .P - P 112. 
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Hence (p(sn) , x* - z+) 2 2he II zn -. xn 112. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, = 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABy what has been proved, cpn - (pn+i 2 (82 / 2) (f’(Xn), xn - 

P) 3 (E2/2)(Pn. i.e. cpn+i < (1 - &2/2)(pn. 

If a, < 1, then 

E2 

%t - %+i b 2 

(f’(xn), xn - 5”) 

II xn - 37 112 
> heEz(f'(x9,x" --ii+)> A&&$@, 

i.e. cpn+i < (1 - hee2)~n. 

In both cases, therefore, (P~+~ < q(pn, q = max ((4 - E2/2), (I- 

Aee2)) <. Hence, (pn < cpoqn. But (Theorem 1.6) cpn > y 11 xn -X_* 11 2, 

so that 11~” - X*/I < (‘p,, / y) ‘/q@, which completes the Proof. 

Notes. I. The asymptotic formulae 9n = 0(1/n) in (2) of Theorem 6.1 

cannot be improved without extra assumptions about Q (even if we demand 

strong convexity of the functional). 

2. Method (6.2) was discussed in the general form in [271, but none 

of the above convergence rate estimates were given. In addition, the 

coefficient a, is defined in [27] aa in the method of steepest descent, 

and not as in Theorem 6.1; some unnecessary restrictions are also lm- 

posed on f(n) end Q. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA whole group of methods, intermediate between the gradient pro- 

jection and the conditional gradient methods, Is considered in [281 

(without proof of convergence). 

We now examine the aspect of the conditional gradient method for 

various concrete problems, without dwelling on the convergence condi- 

tions, which are readily obtained from the above results. 

1. The problem of non-linear programming with linear constraints: 

mln f(x), .4x<b, n E E,, b E E,, where A Is sn m x r matrix. To de- 

termine Gn at each step we have to solve the auxiliary problem of linear 

programming: min (f ‘WY, xl, Ax < b. Method (6.2) was proposed in this 

form in [291, and statements (1) and (2) of Theorem 6.1 proved for this 

case. 

2. For the restriction 11 x 11~ p in Hilbert space 11 Zn 11 = -pf’(xn) / 

II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfwj 11, so that method (6.2) becomes 
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.pH = xn - air p II f’(xn) II ( f/(xn) + xn) . 
(6.3) 

It is easily shown that, as p + 03, the method approximates to the ordi- 
nary gradient method (4.2) for an unconstrained extremum. The method 
can be applied in this form both in the finite-dimensional case (con- 

straint and in optimal control problems (constraint 

( j $*yt)dt )“; p.) 

3. For 

type u(t) 
set of Er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’ 0 i=i  
, , 

optimal control problems (2.1). (2.2) 

E ‘M, for almost all O< t <T, M, is 

for all t, method (6.2) becomes 

with constraints of the 

a bounded closed convex 

un+i(t) = u”(t) + an(LP(t) -u”(t)), (6.4) 

where Gn(t) at each instant t realizes on V, a mtnimum with respect to u 

of the linear function (h(t), u(t)), where h(t) is given by (2.4). The 
method was considered in [30, 311 for problems of this type. 

Notice that, when system (2.2) and F(n, u, t) are linear in u, the 

method is the ssme as the method of [321 (see also [221, Section 6.61, 

so that a proof of the convergence of the latter method can be obtained 

in this case. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7. Newton’ a method 

The Idea of this method lies In approximating the functional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x) to 

be minimized at each step by a quadratic functional (first terms of a 
Taylor series) and taking the minimum point of this functional on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ aa 
the next approximation. Thus, xn+l Is given bs the condition 

xn+i E Q, In txn+9 < j7‘ (3) for all x E Q, 

(7.1) 

fn (x) = (f’(xn), 2 - Zn) + 1/2(Y(x”) (x -  xn), 2 - 39). 

The modified Newton method [21 can be extended in exactly the same way 

to the case of constraints, but we shall not dwell on this. 
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Theorem 7.1 

Let Q be a closed convex set in Hilbert space E, f(x) a functional 

twice differentiable on Q, where f “<x) satisfies the conditions 

m II Y II2 G (P’(x) Y, Y) G M II Y II29 m > 0, (7.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

II f”(Z) - p’(z) II G fi II 2 - 2 II (7.3) 

for all X, t E Q and all ,y. Further, let 6 = (2Rj m) 11 xi -ti II < 1, 

where ~1 is defined in terms of x0 from (7.1). Then the sequence (7.1) 

is convergent to the minims n*, where 

II zn - 5, II sg 2 $ Pk. 

k=n 

Proof. Since f,(x) has a minimum on Q at the point xncl, (f,‘(x”+‘), 

x will also have a minims on Q at this point, see (1. I). Hence 

{f*‘(xn+i), x=fi - rn) = (f’(xn) + f”(xn) (~n+i - 2n), p*i - 29) < 0. 

Consequently, 

fn (Zn+l) = (f’(xn), xn+’ - xn) + -$yxy (x”f’ - xn), lP+t - x”) < 

< - &yxn, (xn+i - xn), xn+i - xnf < - F 11 xn+i - xn p. 

Thus, 

(7.4) 

On the other hand, ~~(~~~*~ = (f’(9), P4i - P) j- i~2~~(~n) (t”+’ - xn), 

.P+t - 39) > (~‘(~~), 2 &i-an). Further, by (7.31, j’(sn) =/‘(x+~) f 

f”(rn-3) (P - .~n--l) + r, where IIril < Rllxn - sn-ft12. hence 

-fn (xn+*) < -(f(e), xn+i - xn) = 

= _ (f’(xn-i) + f’t(xn-‘) txn _ x+-i) + r, xn+* - 29) = 

= - (fn_l (x%), z”+’ - xn) + zn+* - xn) sg (r, x*) < 

< 11 r ]I /jx”-+f xn 11 < R It 5” E”--* 112 &En+* - s*ll. 
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Combining this with inequality (7.4), we get /[z?+~ -snlf \( (2fi / m) 

~[LP - LP-~[/~. Wence it follows by induction that I[z~+~ - PII < 

(m / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2R) 62” . Hence 

i.e. llXR - sg-to as k,n-+oo. The sequence zn is therefore funda- 

mental, so that there exists 2* = lim s*, where n* E Q and 
Il--+rn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OD 

ii 29 - 5* II < g 2 e2T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i=n 

It is easily shown that the sufficient condition (1.3) for a minimum is 

satisfied at x*, which completes the proof of the theorem. 

#VO~.SS. 1. The condition 6 = (2~~~)ll~~--.@ ll < 1. characterizing the 
closeness of ~0 to the minimum is more conveniently checked than any 

other condition, including lizO-- z*//. 

2. If Q = E, (7.1) becomes the ordinary Newton method (4.91, and 

Theorem 7.1 is the ssme as Theorem 4.4. 

3. Newton’s method seems not to have been used previously for prob- 

lems with constraints. 

We give some examples of applying Newton’s method. 

I. For the problem of non-linear programming with linear constraints 

min f(x), An < b, x E En, b E Er, where A is an I x r matrix, method 

(7.1) mounts to a sequence of problems of quadratic programing 

2. For the linear optimal control problem (2.11, (2.3) with a fixed 

value of x(T) = d (so that we can assume 0 a 01, method (7.1) is the 
same as Newton’s method for the unconstrained extremum problem (4.16) 
except that the boundary conditions become ii!(O) = SCTj = 0. 

3. In the case of the linear optimal control problem (2.11, (2.3) with 

constraints of the type u(t) E 8, for almost all O< t\c T, method (7.1) 
reduces to a sequence of problems on minimizing a quadratic fictional 
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under the ssme constraint. The method of solving this latter problem is 

given in [331, 

4. In the case of the non-linear optimal control problem, Newton’s 

method is extremely laborious, However, we can use here a method which 
is an analogue of (4.11) for the case when constraints are present. Th 
method is therefore the same as the Newton method described above for 
linear systems, provided we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat each step, as the linear system (2 
the linearized equation (2.2), i.e. the equation &/dt = 9%; + q@ 

X(0) = 0. 

iS 

.3), 

8. Methods of set approximation 

The essence of this group of methods is to replace the initial prob- 

lem of minimizing f(x) on a set Q by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa sequence of problems on minimiz- 

ing f(x) on sets (?a approximating to Q. The set sequence Q, can be 
chosen in advance (as in the Ritz method), or the next Q, can be deter- 
mined from the results of the previous problems (as in the cut-off 
method). As distinct from all the previous methods discussed, the 

successive approximations obtained in set approximation methods do not 

necessarily belong to the initial set Q. 

Theorem 3.2 

Let (? be any set in Banach space 

a Lipschitz condit Ion on G Q,, and 
7l=i 

ids = 
XEQ 

E, and f(n) a functional satisfying 

bounded from below on Q: 

f’>--oR 

Let Q, be a sequence of sets, and the sequence ~a E Q,, such that 

where 

f(P) <ii f(s) + en, lim E~ = 0, 
11 lt-+CX 

lim ini l/X--III = 0 for all XEQ, 
fL_wD yEo, 

lim inf IIzn -2 II = 0. 
~L+OD ZXEQ 

Then lim f(C) = f”. 
ll-L3J 

(8-f) 

(8.2) 
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Proof. Let yk E Q be a minimizing sequence for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(n) on 13, i.e. 

lim f(y”) = f’ (f(yk) > f’). By (8.1). given any yk E Q. there 

exists a sequence ~0 E Q, such that lim zn 
n-*b, 

= yk. By the Lipschitz con- 

dltion on f(x), limf(z”) = f(yk.). Hence 
n+co 

. . . . _ _ 
f(yR) = lim f(zn) > IiE(&i f(z)) 3 lim’(f(zF)- En) = lim ffs”). 

%-roe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 

n-ww n-PC0 

Passing to the limit as k -+ to, we get Kf(z?) <f”. Further, given any 
W-U0 

E > 0 there exists for sufficiently large n, ‘;” E Q such that I] x” - 

? 11 < E. Hence, by the Llpschitz condition of f(x), If W) - 

f(P) I(\( ME. But f(P) 2 f*, since Zin ez 0. Hence limf(zn) > 
TI-KO 

f(?iF) -ME 2 f” - ME. Since E Is arbitrary, we now have 

lim f(F) 2 f*, i.e. lij(sn) = lim f(F) = f’. 
- 
ql-+m n*= W-+co 

Motes. 1. If the sequence Q, is such that Q, c Q for all n, (8.2) 

is obviously satisfied, while if Q c Q, for all R, (8.1) is obviously 
satisfied. 

2. Notice that the theorem does not demand that the sequence Q, be a 

good approximation to Q everywhere; it is sufficient that it approximate 

Q in a nelghbourhood of the minimum. In particular, it can happen that 

q,, I Q,,+,_zJ Q, but c Qn # Q (as in fact happens in the cut-off method). 
?&=I 

3. The sequence _z+ obtained in Theorem 8.1 is a t%S (Section 1) so 

that Theorems I.4 - 1.6 are applicable. 

Some methods of obtaining the set systems Q, are discussed in the 

next two sections. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9. Ritz’e method 

The idea of this method, rihlch is well known for problems without con- 

straints [451, is to approximate the admissible set by finite-dimensional 
sets. 
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Let al, . . ., a*, , , . be a complete system in (?, i.e. for any x E '2, 

lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinf ll_2- 5 hi@\/ = 0. 
n-WC0 h,...Zn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i=l 

We shall call it a basis. We denote by L, the subspace stretched over 

al, . . ., a*. We take 9, = L, fl (I and solve the minimization problem 

for f(z) on I?*. This problem is finite-dimensional, since it amounts to 

minimizing cp(A, . . . , An) = f ($ Aid 
> 

under the constraint i Aiai E Q. 

7=i 14 

Theorem 9.1 

Let 0 be any set in Banach space E; al, . . . . a* be a complete system 

in (2; f(x) a functional semicontinuous from below on Q. Let the sequence 

n* be such that ~9 E Qn, f(zn) < inf f(s) j- E,,, iim e, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Then 

==Q?I n-+oo 

lim f(P) = f’ = inf f” (n). 
T%-PCO KfZQ 

Roof. Let ,vk be a minimizing sequence. Since f(n) is semicontinuous 

from below and the basis is complete, for any ,yk we can find zA E Q,,, 

f(@ -f(P) < W) - f” + bl, lim bk = 0. The sequence z k will now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k+ca 

also be minimizing, i.e. limf(9) =f”. Sut, by definition of x*, 
k+oa 

Hence lim f(P) = f’. 
n-hot 

The Ritz method is worth using when the constraint 5 hiai E Q in 
44 

E, is not too complicated. We give some examples. 

1. For the optimal control problem (2. l), (2.2) under the constraint 

u(t) E 21 for all O< t< T step functions are best taken as the basis. 

In fact, we introduce the functions aij(“)(t), i = 1, . . . . r, .j = 1, 

. ..) rl 

1, if 

a#) (t) = 

-+)<t<;j, 

o 
7 otherwise 

and seek u(t) aa a combination of these functions 
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w(t) = i h#zp(t), i= I,...,r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9.1) 

j=i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The constraint u(t) E M now generates the constraints hj E V, j = 1, 

. ..f 17, where hj is the vector with components hlje . . . . h,j. In particu- 

lar, if the initial constraint has the form luj(t) I< I, the constraint 

on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhij is ~usually simple: /Aij / & 1 for all i and j. The auxiliary 
problem thus reduces to minimizing a function of rn variables hij under 
simple constraints on these variables, We emphasize that, to evaluate 

the function for any values of the hij, we have to introduce the control 

u(t), (9.1). integrate system (2.2) with this control then evaluate the 

functional (2.1). This is not equivalent to the method of finite-differ- 
ence approximation commonly employed for equations and functionals. 

2. If there are no constraints, or they have the form 

[ iuiZ(lt)dt < P or { Ui2(t)dt <pi, i = 1. . . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$41 

in the optimal control problem, other bases csn be chosen. For instance, 
we can use a system of trigonometric po~nomials or Legendre pol~omials. 

3. If the optimal control problem (2.1) and (2.3) is linear, we can 

also apply the Ritz method when there are also constraints on the phase 

coordinates. For, if there are COnStraintS Rk(X(tj))<O, k = 1. . . ., s, 

specified at a finite number of points tj (in particular, the condition 

x (T) = d), then, since xi(tj) is a linear functional of U, each such con- 
straint generates a constraint on a linear combination of coefficients h. 

In particular, if all the gk are linear, we obtain the problem of non- 
linear programming for h with linear constraints. 

4. If the constraints in problem (2. l), (2.3) are g(x(t))& 0 for all 
0 < t < T, g(x) is a convex function, then (2. l), (2.3) can be approxi- 

mated by problems with step functions u and constraints g(X(tj))< 6, 

tj = Tj/n, j = 0, . . ., II - 1. 

Let their solution be @(t), xn(t). Since q(x), x(t) are continuous, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g(x(tj)) <O implies Iim g(s*(t)) g 0 for all t, i.e. g(zP) = max 

7+UC t)$t<T 

g(z”(t)) -+o 89 n +a. 

If g(u) < 0 is a correct constraint (see Section 2 for the condition 
for this), then an(t) is a GhB (Section 1) and Theorems 1.4 - 1.6 are 
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applicable. In particular, for tire classical variational problem (i.e. 

for system (2.2) of the type dx/dt = u, r = m), g(x(tj) ~0 implies 
g&(t)) sg 0 for all t, (x(t) corresponding to piecewise constant u(t), 

piecewise linearly, so that the constraints g(x(t) & 0 only need to be 

checked at the corners of the step-line). Thus we here obtain simply a 

minimizing sequence, and not a GMS. 

5. If an entire system of constraints is given, for each of which the 

Ritz method (with the ssme basis) is applicable and reasonably simple, 

the method will not be too difficult for the problem as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa whole. In 

particular, the Ritz method is easily applied for the linear optimal con- 

trol problem in which there are constraints of the types u(t) E M and 

ji 0 ui2 t dt < p and constraints on the phase coordinates. Herein lies 

0 i=i 

the important difference from the methods previously considered, where 

an ability to solve the auxiliary problem (projection, finding the 

minimum of a linear functional, etc.) on each set separately does not 
necessarily enable us to solve it on their intersection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10. Cut-off methods 

In these methods the problem of minimizing f(x) on Q is solved 

SuccessivelY on the sets Q, 3Q,tZ 3 Q. After finding the minimum point 
X” of f(x) on on, we add a new constraint, ncutting-offa the point 

- 
x, E .j, which in fact determines the new set Qn+l. 

Two convergence theorems are given for these methods below. In the 

first, the ~issible set is specified by means of the constraint 

g(n, s) < 0 for all s E S, s is a parameter; in the second, by mesns of 
the single constraint g(x) < 0. This difference is only apparent. For. 
introducing the functional g(s) = supg(x, 51, we can reduce the con- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SES 

straint g(x, s)& 0 to g(x)< 0. On the other hand, if g(x) is a convex 

functional, the constraint g(x) 4 0 is equivalent to the system of 
(linear) constraints g(s) + (g’(s), x - s)< 0 for all s E E, where 
g’(s) is a linear support functional to g(x) at the point s. The real 
difference between Theorems 10.1 and 10.2 is that the former refers only 
to the finite - dimensional case: though far weaker conditions are im- 
posed on the functional in it than in Theorem 10.2. 

We take the problem of minimizing the functional f(n) under the 
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constraints x G Q0 and ~(x, sf GO for all .S E S, S is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa set. Let 

Q = 30 n tx : g(x, s)< 0 for all s E S). The following method of 
solution is possible. 8uppose we have obtained the set Q, (we start with 

n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). We find the minimum of f(x) on Q.,; let this be at the point xn. 
We then solve the problem: maximize a(xn, s) with respect to s cz S, let 

the solution be sn. We now obtain &.,+l by sdding the new constraint 
a(x, sn)< 0. Thus 

9 E Qn, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (x=1 = minf(s), g(rn, Sn) = max g(2”, s) , 
XEQ, SES (10.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q n+i = ad7 {X:CT(Z,S*)G 01. 
Theorem 10.1 

IJet Qo be compact, f(x) continuous on Qo, g(x, s) satisfy a Lipschits 

condition with respect to .K with constant Y for all s E S, and method 

(IO. 1) be applicable, Then, for the sequence (IO.I), 

Jim f(P) = f* = min f(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 

n-w32 XEQ 

and a  subsequence xni exists convergent to the solution. 

Proof. Since 0, ZI) Qn+l 3 Q. we have f (x9 <f (hl) <f*. We show 

that lim g(zn, sn) < 0. Let there exist E > 0 such that ~(nn, sa)& e - 
?z--+co 

for all reasonably large n. No w, E < g (x” , sn) = g (P, sn) - 

g (sk, Sn) + g (x’ l, P) < Mllx”  - xkll + g w, Sn). But since 

xk E Qn+l for k $ n, we have g(nk, snI < 0, i.e. llzn - zkli > E/ k! for 

all reasonably large it and all k > n. But this contradicts the compact- 

nesa of Qo. Hence lim g(xn, sn) ~$0. We select a subsequence .zni for 
zz 

which limg(zni, Sni) f 0 and for which there exists X* = limxni (this 
i-+00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAix0 

is possible because Q. is compact). Now, g(x*, s) II= g (x*, s) - g (xy s) + 

g  (5% s) < Mllxi - xnill + g (x%, s%) Hence fs(x*, s) < 0 for all s E S. 

Thus, X* E Q. Since f(xni) <f*, we also have f(x*) cg f*; on the other 

hand, f (x*) 2 f * be definition of f *. Hence x* is the solution of our 

problem. 

We now conaider the cut-off method (10.2) 

f(sn) = min f(x), &+I = On il (z : g(t*) + (d(sn), x - xn) < 0}, 
XEQ, 
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for the problem of minimizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x) on Q specified by the condition 

Q = {X : g(x) < 01, where, as usual, g’(xn) is any linear support func- 

tional to g(x) at the point xn, and Q0 1 Q is a set. 

Theorem 10.2 

Let f(x) be uniformly convex on Q,, c E, where E is reflexive, Q,, 
convex and closed, and g(x) a continuous convex functional satisfying a 

Lipschitz condition on QO. We now have, for method (IO. 2) : 

1) lim f(P) < f’ = min f(s), lim g(P) < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; 
m-+m XEQ ?I-+02 

2) if g(x) is a correct constraint, and f(z) satisfies a Lipschitz 

condition on Q,,, then lim .P = z*, Z* E Q, f(x*) = f” and lim f(sn) = f’; 
n-%x 1z-+CX 

3) if, in addition, f(x) is a weakly convex functional and there 

exists 2: g(n) < 0, 2 is an interior point of QO, then the convergence 

rate satisfies f(zn) - j* < cl / n, tn -- z* < c2 /TX 

Proof. Since Qn I Qn+i 3 Q, we have f(P) < f(zn+l) < f*, and 

there exists f’ > 7 = limf(P). Since f(x) is uniformly convex, while 
71--ro3 

xn is the minimum of f(n) on Qn, we have f(x) - f W) 2 6(llzn - ~11) 

for all x E 0,; in particular, f W+l) - f WI > ~(I(x*+~ - znll). Hence 

it follows that lim I[z~+’ - znII = 0. Further, since gn+i E Qn+l. we 

have 0 > g(P) iyg’(r”), a?+1 - sn) > g(s”) - Ilg’(P) II IIZn+i -_Pll, 

i.e. g(+) < Mlls n+i - PII (since Ilg’(sn) 11 is bounded by virtue of the 

Lipschitz condition on g(x)). hence limg(P) = 0. 

We turn to the proof of (2) of the theorem. If g(x9 < 0, then 

xn E Q, so that, f (xn) > f*, i.e. in this case .xn is the solution. Let 

g(n”) ’ 

If g(x) 

0) = 0. 

follows 

0 for all n; now, by what has been proved, g(xn) w + 0 as n + w. 

is a correct constraint, it follows from this that lim p(xn, 
*-+X3 

Theorem 8.1 is now applicable, whence lim j(P) = f”. But it 
n-+03 

from this, by Theorem 1.5, that xn converges to the solution x*. 
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We now estimate the convergence r&e for strongly convex functionals. 

For these, the above condition f(x”+*) - f(x*) > 6(kP+* --PI/) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f@ n+‘) - f(P) 2 yllP+* - P/P, y > 0. Further. let g(x) > 0 for all n 

in which case there exists 0 < h, < 1 such that g(X + kn(xn -Z)) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Using the convexity of g(x), we get 0 = g(lL:+ Xn(xn -.Z)) < (1 - 

h&W + k~(~~), i.e. a(~“) 3 (4 - h, / A,) [-g(Fj] 2 (I- ha) 

[-g(S)]. but jl.~n - (z+$_~(P - x))ll .>p(xn,Q), so that I - hn> 

P(P, Q) / llsn - fll 2 CP(.P, Q) (kJeGaUSe {xni is bounded). Tnus, 

g(e) 2 cp(xn, Q) [-g(5)] = Kp(zn, Q), K > 0. As was shop above, 

g(P) < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMllLcfl+~ - xq. Hence p(P, Q) d (&I/ K) l/P+1 -PI/, and 

since f*--f(m) < ~p(~~,Q). then f” --f(~~) SZ (~~~~/~)ll~~+*-~~~~. 

Let f* -f(xcn) = 9,. Ye have obtained (pn < (LM/ K) ilxn+* - Pjl, while 

above we obtained. j(xn+‘) ---f(P) = (pn - (pn+i > yljxnSi - ~~11~. Combin- 

ing these, we get 

Using the same technique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in the proof of (2) of Theorem 5.1, we ob- 

tain the required estimate. 

Note. It is not clear whether the convergence rate estimate obtained 

above can be improved. 

We now consider the aspect of the cut -off method in various concrete 

problems. 

1. The general problem of convex ~rogr~ing (minimization of f(x) 

under the constraints gi(x)\i 0, i = 1, . . . , r, f(x), gi(x) are convex 

functions in Em) can easily be seen to reduce to the problem of minimiz- 

ing the linear function xntl under the convex constraints f(x) - x,tl < 

0, gi (x) < 0, i = 1, . . . , r, in space Em+l. Further, the system of con- 

vex constraints of the type gi(x) d 0, i = 1, . . , , r, reduces to a single 

convex constraint g(x)< 0, where g(x) = max gi(s). Thus, instead of the 

initial problem, we can consider the minimization problem for the linear 

function (c, X) under the convex constraint g(x)< 0. Let Q0 be a poly- 

hedron (if the constraint n E Q 

introduced, e.g. in the form 1 

is absent, it has to be artiZc!I;;lly 

xi P < ,M for all i, %f is a large n~ber) . 

Now, Qlr+i = Qn f-j (LX : g(s”) + (g’(cPJ,x - ‘&) < 0) is also a polyhedron. 

Method (10.2) thus reduces here to solving a sequence of linear 
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programming problems. The convergence of the method can be proved by 

Theorem 10.1. For, the constraint g(x) <O is equivalent to gfx, s) = 

g(s) + (g’(s),z-s) GO for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Method (10. I) is now easily seen 

to be the same as method (10.2). 

This “method of cutting planes* was proposed by Kelley for this 

problem [341, and he proved its convergence. 

2. The problem of best approximation amounts to minimizing 

where S is a compacts, q(s), wi(s) are continuous functions on it, and 
the Qi, . . . . Q, are linearly independent. In addition, certain auxiliary 
constraints can be imposed on the coefficients xi: x E Qo. This problem 

amounts to minimizing ~w+~ under the constraints 

< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXm+i for all SES, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:~Qi,. 

i=i 

Method (10.1) is applicable to this problem, where it takes the follow- 
ing form: xlk, . . ., k xl# 8 x i+1 is the solution of the problem: min ~w+~ 

under the constraints 

Sk+1 is giVetI by the condition 

The method thus reduces to solving a sequence of problems of best 

approximation on a discrete system of points s I, , . . , sk  (which is equi- 
valent to the problem of linear programming if Q. is a polyhedron) and 
to determination of the maximum modulus of the deviation for the next 
approximation. Methods of this kind are familiar in the theory of best 
approximation (see e.g. [351, which contains various results on their 
convergence and also references to other work). 

3. We consider the linear optimal control problem (2. l), (2.3) under 
constraints on the phase coordinates of the type q(x(t)) GO for all 
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O,( t< T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhere 9(x) is a convex function. We investigate the method 

whose q-th step consists in minimizing f(u) under the constraints 

q(zi(ti)) f (q’(s*(t{)), z(ti) -xi(&)) < 0, 1: = 1, . . . , n- 1, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xi (t ) is the solution of the probiem at the i-th step, and t i the point 

introduced at this step. We introduce the next, n-th point from the con- 

dition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(10.4) 

This method is a variant on method (10.21. For, the constraint 

9(x(t))< 0 is equivalent to g(u)&O, where 

is a convex functional (as usual, x(t) is the solution of (2.3) corre- 

sponding to the control u(t)). Further, if (10.4) Is satisfied, for one 

of the support functionals to g(u) at the point un the constraint 

R(un) + V(un), u - zP) < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 becomes q(xn(tn)) -I- (q’(P(h)), r(L) - 

P(t,)) < 0, i.e. is the same as the above. We can therefore apply 

‘i’:leorem 10.2 to prove the convergence. All the assertions of the theorem 

will certainly be satisfied if Q0 = E, f(u) is a strongly convex func- 

tional, and g(u) a correct constraint (the sufficient conditions for 

this are given in Section 2). 

We shall not dwell on methods of solving the auxiliary problem. We 
merely remark that it consists in minimizing f(u) under a finite number 

of linear constraints of the type (ci, u) < ai, i = 1, . . . , n -  1. It 

can therefore be solved like any analogous finite - dimensional problem 

of mathematical programming. 

11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!llethod of penalty functions 

In all the methods discussed so far, the constrained extremum problem 

has been reduced to a sequence of simpler constrained extremum problems. 
The initial problem may also be reduced to a sequence of unconstrained 

extremum problems. In the method of penalty functions the unconstrained 
problem is obtained by introducing a penalty on infringement of the con- 
straints. This idea is common in computational practice [20, 22, 36 - 421; 
it seems to have been first clearly stated by Coursnt. 

We give some examples of penalty functions. We shall assume that our 
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set is given by means of one constraint g(x) < 0, and consider a sequence 

of penalty functions of the type y,(x) = Q~(~(x)). The following are the 

most popular examples of such functions. 

1. *n(s) = K&(~)+7 (11.1) 

where I<, > 0, lim K, = 00; here and below, g(z)+ = max (0, g(z)},. 
n+r 

Obviously, y,,(x) 30 for all X; lim&(z) = 00: if g(x) > 0; the y,(x) 
?l-+CXI 

are convex if g(x) is convex. 

2. %L(s) = (g(r)+ + 1)” - 1. (11.2) 

It is easily shown that V,,(X)> 0, V,(X) = 0, if g:(x) GO; 

lim IJ?~ (z) = 00 for g(x) > 0; the v,,(x) are convex if g(x) is convex. 
?l+CU 

$ln(x) = kW + I)+]“. (11.3) 

Here, v,,(x) > 0 for ~~11 x, lim q,,(z) = 00 for g(x) > 0, as distinct 
n*cn 

from the orevious examples, generally speaking, q+,(x) # 0 for g(x) GO 

(for instance, ~J~(x) = 1 for g(x) = O), but lim $)n(s) = 0 for g(x) CO. 
11+00 

In addition, the q+,(z) are convex if g(x) is convex. 

4. 

$n(z)= +m7 if g(x)3 07 

i 

a, 

R(X) ’ 
if g(x) < 0, 

(11.4) 

where an > 0, lim an = 0. As before, yr,(n) > 0 for X, h$,(x) = 0 
n-m? n-too 

for g(x) < 0 and the v,,(x) are convex for g(n) < 0 if g(x) is convex. 

The functions (11.4) are not continuous on E. However, we can intro- 

duce more complicated functions of the same kind, which are continuous. 

For example, 

-anls(x)1 if g(s) < 0 and - an/g(x) <K,, 

h(x)= K 
otherwise 
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where a, > 0, lim an = 0, K, 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, lim G = 00. 
n-too ll-*co zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Of course there are other examples of penalty functions. In particu- 
lar, they can be obtained from (11.1) - (11.1) if the constraint ,o(n),(O 

is replaced by the equivalent constraint p(g(x)) GO, where p(t) is a 

continuous function, end g(t) > 0 for t > 0 and p(t) ( 0 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt < 0. 

We rlow consider the method of nenaltv functions itself for the prob- 
lem of minimizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x) under the constraint x E ‘j, where ,.J = {x : 

g(x) 4 0). Th e method consists in solving (UP to E,, where lirn~~ = 0) 
7X3 

a sequence of prohlems on the unconstrained minimum nf f(x) + y,,(x), 

yr,(n) = pn(g (x)), i. e. in determining the sequence nn: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII .I 

Let f(x) and g(n) be continuous. 1:) be non-empty, d,.-+ .i > - a,, 

qua 2 0 for all x, n, lim q,,(z) = 0 on the set :7 everywhere dense in 
n+ca 

9, and lim cpll(t) = co for t > 0. Now, in method (11.5). f (x9 & f’ = 
,1+00 

inf f(X), lim g(P) < 0. If the constraint g(x) is correct, and f(x) 

XEQ n-+03 

satisfies a Lipschitz condition in some neighbourhood (,, then 

limf(P)=f*, limp(rn,Q)=O, i.e. xn is a Gh4S. 
n-tm 11- 

PFOOf. Let ,ym be a minimizing sequence for f(x) on q. i.e. ,y” E I!, 

limf(ym) = f’. Given any .ym, we can find zm E 4 such that 1 f (,y”) - 
m+m 

f(z”)IGf(p)-Y+b, limb= 0. This is possible, since R is dense 
m+ca 

in :j and f(n) continuous. Obviously, z 111 is now also a minimizing sequence, 

By definition of xn, we have f(P) -I- $:,(ZVL) < f(P) $ q,(P) -/- en. We 

take E > 0, and choose m so thst f(z”)< f” + E/S; Since zm E fi, W0 can 

find an Y so that vn(zm) < 43 and E,,< a/3 for all nav. Now, f(P) + 

v,,(xn) < f* + E. Since E is arbitrary, this means that lim (f(s+-)+ 
n+m 

Vln(X”)J< f’, and since v,,(xn) 30 we also have lim f(P) &f’. On the 
n-+m 

other hand, li+m,$n(2a) < l$nE(j* - f(zn)) < f’ - cl. hence it follows 
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(since Em+, (z) = lim (pn (g (z)) = 00 for g(x) > 0), that 
ll+co n-*m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

gg(P) < 0. Now let g(x) be a correct constraint. In this case, 
Tl- 

lim g(s) < 0 implies lim p(zn, Q) = 0. Finally, it follows from the 
T,-+ca n+8 

Lipschitz condition on f(x) that f(sn) > f‘ +Lp(sn, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ), i.e. 

lim f(zn) > f’. Finally, therefore, lim f(s*) = f’. 
n-+ca n+oo 

We. Penalty functions of the type (11.1) and (il. 2) satisfy the 

conditions of the theorem everywhere, but those of type (11.3) and (11.4) 
only when R = {n : g(x) < 0) is dense in (2 = {x : g(x) c 0). The latter 

is true, in particular, if g(x) is convex and R non-empty. Functions of 

the type (Il. 3), (11.4) are certainly continuous if R is empty. 

We turn to application of the method of penalty functions to specific 

problems. 

1. In the problem of 

0, i = 1, . . . . r can be 
many methods, e.g. 

mathematical programming the constraints g i (x) & 

reduced to the single constraint g(x) < 0 by 

8 (~1 =iz~r @i(z)) or g(x) = 2 cm(s)+, ai > 0. 

i=i 

It is specially convenient to take 

r 

g(z) = 2 uiE&(q+l”, ai > 0, 
i=i 

since g(n) is now differentiable if the gi(X) are differentiable. After 
this, penalty functions of the type (11.1) - (11.4) can be applied. 

As already mentioned, if Q is bounded, the constraint g(x)< 0 is 
correct in the finite - dimensional case and Theorem 11.1 is applicable. 

The method of penalty functions in the form (11.1) was considered for 
problems of mathematical programming in [40, 221, in form (11.4) in [38, 

391, in a rather more general form of the same type in [411, and in a 
form similar to (11.3) in [431. 

2. If the constraints are in the form of equations g;(x) = 0, i = 1, 
. . . . r, they can be replaced by a single constraint of the inequality 

type, e.g. 
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after which the method of penalty functions can be employed. Here, it is 

not possible to use penalty functions of the type (11.3) or (11.4). since 

the set R = (x : g(x) < O> is empty in this case. Penalty functions of 
the type (11.X) were investigated for this problem in [423. 

3, If the set Q cannot be specified by means of functionals, it can 
always be specified in the form g(n) GO. In particular, for any set. 

3 = 1X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: g(x)< 01, where g(x) = p(x, Q) = inf I( z- y 11. This constraint 
YEQ 

is moreover correct and g(x) = 0 for x E :I. If t? is bounded, closed, 
has an interior point (for simplicity the point 0) and is convex, then 
it can be specified in the form Q = &X : g(x) < 1) by means of the 

Mfnkovskii function g(s) = inf $4). This constraint is also correct 

and convex. 

4. W e now turn to optimal control problems (2. l), (2.2). We take first 

constraints on the control specified in the form 

Q = (u E&: u(t) EM for almost all 0 < t < T), 

il is a convex closed set in E, having interior points, Let q,(u) be a 
system of fUnCtiOnS on E, satisfying the conditions: (1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,(U) > 0 for 
all U: (2) if u E V, i.e. u is an interior point of !I, then 

limrp,(u) = 0, where pcPn(u) is monotonically decreasing; (3) if II g Y, 
R-x)0 

then (pn (a) 2 f&p2 (u, M) , where K, > 0, Grn K, = co, !& is independ- 
n-tea 

ent of u, p(u, M) is the distance from u to # (in B,). Notice that, if 

Qn (u) = 0 for u E W, we no longer require Y to be convex or have in- 
terior points. The following are some examples of functions q,(u) satis- 
fying all the conditions. If the constraints have the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i=l 

we can take 
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If the constraints are ]ui(t)] <I, i=l,..., r, we cantake 

We introduce 

*n(u) = fqn(n(t))dt. 
0 

These penalty functions satisfy all the conditions of theorem 11.1. For. 

qn(U) B 0, fimg,(u) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 on R = {u: u(t) EMO}, and I? = q, while 
7l+oD 

finally, 

q%(u)= fcp*(n(t))dt> ~%l(u(t))dGA Sf+(u(t),M)dt= 
0 a S 

=,nj lb(t)- u(t)lg.W = &p2(u, Q), 

0 

where S = {t E [0, T]: u(t) EM}, u(t) is the projection of u(t) on 

to V. Hence, if the remaining conditions of Theorem 11.1 are satisfied 

(i.e. the Lipschitz condition on f(u) and the boundedness from below of 

f(u) + y,(u)), then in method (Il. 5)) amounting to consecutive minimiz- 
ation of f(u) + yn(u), without constraints, we have the convergences 

f(un) --t f*, S)(un, Q) -+ 0. 

The method of penalty functions can also be used if there are con- 

straints on the phase coordinates. For instance, with the constraint 

g(x(t)) & 0 for all 0~ t 4 T, we can introduce the penalty function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T 

%Jw = Kn ro~=& cw) )I+ or Qn(u)= K, 1 (g(z(t))+]z& (the latter 
0 

is specially suitable, being differentiable if g(x) is differentiable); 

with the constraint x(T) = d the penalty function csn be v,,(u) = 

KnII xV) - d lIEi. The conditions of Theorem 11.1 are easily shown to 

hold here (the criteria for correctness of the constraints are given in 

Section 3). 

If there are several simultaneous constraints, each of them (or part 

of them) can be replaced independently by penalty functions. But diffi- 
culties arise here when verifying if the system of constraints is 
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correct. Notice that the same difficulties arise in this situation in 

the cut-off method (see Section 10). 

The idea of applying penalty functions to optimal control problems 
occurs in [ZO, 22, 36, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA371. But only II361 contains a proof of convergence, 
for one particular case. 

12. The computational aspect 

We obviously cannot consider the computational aspect of the full 
range of extremum problems in the present section: this is a very import- 

ant topic which has not been adequately investigated; the discussion of 

it would have to be largely based on the results of numerical experiments. 
We shall merely dwell on the computational aspect that can be illuminated 

by the convergence theorems proved above. 

A few words first about unconstrained extremum problems (Section 4). 

It is clear from Theorem 4.1 that methods of the gradient type are 
applicable to an extraordinarily wide class of functions and virtually 
any initial approximations. For Newton’s method on the other hand 
(Theorem 4.4). very strict conditions are required for the functional 

being minimizea and for the initial approximation. Further, Newton’s method 
involves much more complicated computations at each step compared with the 

gradient method (namely, we have to find the second derivative f”(z) and trans- 
form it). Nevertheless, Newton’s method has one advantage: a high rate of con- 

vergence, which is sometimes decisive. For, the conditions of Theorem 4.3 are 
usually satisfied close to the minimum, and the gradient method (with optimal 
choice of a) is convergent at the rate of a geanetric progression with ratio 

q = (1 - m)/(‘l + m) = (p - l)/(p + l), where p = ?/m 21. But in many 

practical problems, p = !I/m is extremely large (e.g. in poorly stated 
problems of linear algebra, “well organized” functions of several vari- 
ables, and functions F(x, u, t) weakly dependent on u in optimal control 
problems). In these cases q = 1 - 2/p. i.e. q is close to unity and the 
convergence of the gradient method is slow. In Newton’s method, however, 

we have the quadratic convergence 11 xn -5’ 11 < ch2”, where 6 is inde- 
pendent of p, but depends on how close the functional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x) is to quad- 
ratic in the neighbourhood of n*. Hence the convergence can be extremely 
fast, even for large p. Accordingly, the following combination of methods 
can be useful. We first use the gradient method, which does not require 

a good initial approximation and provides fairly fast convergence at the 

start. After the convergence of the gradient method has slowed down, it 
usually becomes possible to apply Newton’s method, since a good initial 
approximation has now been obtained. The extra complexity of the 
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comoutations at each step is compensated by the substantial increase in 
the rate of convergence. 

We now turn to problems under constraints. In the methods of Sections 

5 - 10 the initial problem reduces to a sequence of auxiliary extremal 
problems on minimizing a linear (Section 5) or quadratic (Section 7) 
functional on ?, on projecting on to 3 (Section C;), or on minimizing f(n) 
on sets !?, (Sections 8 - 10). Naturally, a given method is only worth- 
while if the auxiliary problems can be solved fairly easily. Actually, 
all the examples in this paper were chosen so that the auxiliary problea 

could be solved either explicitly or by some finite method (we count as 
finite, methods which reduce to solving a Cauchy problem for a non-linear 
ordinary differential equation or to solving a boundary value nroblem for 
a linear equation). 

As regards convergence rates, in the gradient projection method 

(Section 5) we have convergence at the rate of a geometric progression 

for a strongly convex functional and any convex set (Theorem 5.t), where- 
as in the conditional gradient method (Section 6) convergence of the 
same type can be proved for a convex functional having no absolute nini- 
mum on 3, and a strongly convex set (Theorem 6.1). On the other hand, the 

auxiliary problems in these methods can be solved fairly easily in 
roughly the same cases. It follows from this that, if the functional is 

only convex, or if it is strongly convex, but p = .14/m is large, the con- 

ditional gradient method is worth using in the case of a strongly convex 
set. If the set is not strongly convex, this method can give extremely 

slow convergence. In particular, in the optimal control problem (2.1). 
(2.3) with F(x, u, t) = F(x, t) and constraints of the type 

u, t) is strongly convex with respect to In, u), and the constraint is 

u(t) E !4 for all 0~ f sg T, the gradient projection method is prefer- 

the conditional gradient method is suitable. If F(x, 

able. As regards the gradient projection and Newton methods, they are in 

roughly the same relationship as their analogues in the case of an un- 

constrained extremum. 

The question of the convergence rate for set approximation methods is 
fairly complex. It is important to notice, however, that these methods 
are still suitable for optimal control problems when the methods of 
Section 5 - 7 lead to excessively difficult auxiliary problems, namely, 
when there are constraints on the phase coordinates (see the examples in 
Sections 9 - 10). In addition, In the cut-off methods (Section IO), 

f(X”) < f*, which enables us to give a lower bound for f*. When combined 
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with one of the methods of Sections 5 - 7 or 3, in which we always have 

f (x”)> f*, this method can yield an error estimate for the approximate 

solution. 

We now turn to the method of penalty functions (Section 11). This 

method is above all extremely general. It can be applied to virtually 

any extremum problem (convergence conditions apart). In addit ion, the 

auxiliary Droblems involved always appear simple. This is by no means 

the case, however. It turns out that the solution of the unconstrained 

extremum problem for the functional a,,(x) = f(x) t vn(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbecomes more 

and more difficult as n increases (provided the minimum does not lie 

inside ;2). We shall illustrate this with an example of minimizing a 

strongly convex functional f(x) under the one linear constraint (c,x).=O. 

We introduce the penalty function V,(X) = ‘&(c,x)*, $, >O, lim K, = co. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h-co 

We shall solve the unconstrained minimum problem for On(~)=f(~)tvn(~) 

by the gradient method and estimate the rate of convergence. Let xi be 

such that (c,ri) = 0, 11 xi 11 = 1, and x2 such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c, x2) = h > 0, 

/I  52 I / = 1. Then, if (c, n) = 0, ((Dn”(~)q,q) = (f”(r)r,, ~1) < M, and 

(a /(5)22,22) = (f”(s) x2, x2) + K ,K  > m + K&2. Hence pn - J,/m, 2 

(m + K,ha) /M, i.e. pn --f 00 as n-t 00. But the convergence rate is 

determined by the number qn x 1 - 2 / pn, so that q,, + 2 as n-t  00. 

In other words. the rate of convergence of the gradient method i:~ the 

auxiliary problem is slower, the greater n. The method of Denalty func- 

tions appears to be suitable only when other methods fail, or in order 

to obtain an initial approximation for another method. Notice, however, 

that, by employing penalty functions of the type (11.4), an upper bound 

can be obtained for f*, and a lower bound by employing functions of the 

type (11.1) or (11.2). 

Translated by D.E. Brown 
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