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Motivating Problem: Structure Learning in Discrete MRFs

@ We want to fit a Markov random field to discrete data y, but
don’t know the graph structure
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Motivating Problem: Structure Learning in Discrete MRFs

@ We want to fit a Markov random field to discrete data y, but
don’t know the graph structure

@ We can learn a sparse structure by using £1-regularization of
the edge parameters [Wainwright et al. 2006, Lee et al. 2006]
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Motivating Problem: Structure Learning in Discrete MRFs

@ We want to fit a Markov random field to discrete data y, but
don’t know the graph structure

@ We can learn a sparse structure by using £1-regularization of
the edge parameters [Wainwright et al. 2006, Lee et al. 2006]
@ Since each edge has multiple parameters, we use group
l1-regularization
[Bach et al. 2004, Turlach et al. 2005, Yuan & Lin 2006]:

minimize — log p(y|w) subject to Z [|Well2 < T
w

e
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Optimization Problem Challenges

Solving this optimization problem has 3 complicating factors:
@ the number of parameters is large
@ evaluating the objective is expensive

© the parameters have constraints
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Optimization Problem Challenges

Solving this optimization problem has 3 complicating factors:
@ the number of parameters is large
@ evaluating the objective is expensive

© the parameters have constraints

So how should we solve it?
@ Interior point methods: the number of parameters is too large
@ Projected gradient: evaluating the objective is too expensive

@ Quasi-Newton methods (L-BFGS): we have constraints
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Extending the L-BFGS Algorithm

Quasi-Newton methods that use L-BFGS updates achieve state of
the art performance for unconstrained differentiable optimization
[Nocedal 1980, Liu & Nocedal 1989]
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Extending the L-BFGS Algorithm

Quasi-Newton methods that use L-BFGS updates achieve state of
the art performance for unconstrained differentiable optimization

[Nocedal 1980, Liu & Nocedal 1989]

L-BFGS updates have also been used for more general problems:
o |L-BFGS-B: state of the art performance for bound constrained
optimization [Byrd et al. 1995]
o OWL-QN: state of the art performance for /1-regularized
optimization [Andrew & Gao 2007].
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Extending the L-BFGS Algorithm

Quasi-Newton methods that use L-BFGS updates achieve state of
the art performance for unconstrained differentiable optimization
[Nocedal 1980, Liu & Nocedal 1989]

L-BFGS updates have also been used for more general problems:
o |L-BFGS-B: state of the art performance for bound constrained
optimization [Byrd et al. 1995]
o OWL-QN: state of the art performance for /1-regularized
optimization [Andrew & Gao 2007].

The above don't apply since our constraints are not separable
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Extending the L-BFGS Algorithm

Quasi-Newton methods that use L-BFGS updates achieve state of
the art performance for unconstrained differentiable optimization
[Nocedal 1980, Liu & Nocedal 1989]

L-BFGS updates have also been used for more general problems:

o |L-BFGS-B: state of the art performance for bound constrained
optimization [Byrd et al. 1995]

o OWL-QN: state of the art performance for /1-regularized
optimization [Andrew & Gao 2007].

The above don't apply since our constraints are not separable

However, the constraints are still simple:
@ we can compute the projection in O(n)
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Our Contribution

This talk presents an extension of L-BFGS that is suitable when:
@ the number of parameters is large
@ evaluating the objective is expensive

© the parameters have constraints
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Our Contribution

This talk presents an extension of L-BFGS that is suitable when:
@ the number of parameters is large
@ evaluating the objective is expensive
© the parameters have constraints

@ projecting onto the constraints is substantially cheaper than
evaluating the objective function
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Our Contribution

This talk presents an extension of L-BFGS that is suitable when:
@ the number of parameters is large
@ evaluating the objective is expensive
© the parameters have constraints

@ projecting onto the constraints is substantially cheaper than
evaluating the objective function

The method uses a two-level strategy

@ At the outer level, L-BFGS updates build a constrained local
quadratic approximation to the function

@ At the inner level, SPG uses projections to minimize this
constrained quadratic approximation
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Problem Statement and Assumptions

We address the problem of minimizing a differentiable function
f(x) over a convex set C:

minimize f(x) subjectto xe€C
X
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Problem Statement and Assumptions

We address the problem of minimizing a differentiable function
f(x) over a convex set C:

minimize f(x) subjectto xe€C
X

We assume you can compute the objective f(x), the gradient
Vf(x), and the projection P¢(x):

Pe(x) =argmin  ||c — x||2 subject to ¢ €C.
c
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PG: Projected Gradient Algorithm

PG: move towards the projection of the negative gradient
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PG: move towards the projection of the negative gradient
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Naive Projected Newton Algorithm

@ The problem with projected gradient: slow convergence
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Naive Projected Newton Algorithm

@ The problem with projected gradient: slow convergence

@ Can we speed this up by projecting the Newton direction?
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Naive Projected Newton Algorithm

Feasible Set
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Naive Projected Newton Algorithm

.' P(Xk - gk)
Feasible Set [/
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Naive Projected Newton Algorithm

@ The problem with projected gradient: slow convergence

@ Can we speed this up by projecting the Newton direction?
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Naive Projected Newton Algorithm

@ The problem with projected gradient: slow convergence

@ Can we speed this up by projecting the Newton direction?

NO! This can point in the wrong direction
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Naive Projected Gradient Algorithm: Problem

Feasible Set

P(xk - Bk\gk)

| P(Xk - k)
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Correct Projected Newton Algorithm

@ In projected Newton methods, we form a quadratic
approximation to the function around x:

Gr(x) 2 fi + (x — x) TV F(xe) + 3(x — xk) T Bi(x — xk)
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Correct Projected Newton Algorithm

@ In projected Newton methods, we form a quadratic
approximation to the function around x:

Gr(x) 2 fi + (x — x) TV F(xe) + 3(x — xk) T Bi(x — xk)
@ At each iteration, we minimize this function over the set:

minimize  qx(x) subjectto xeC
X
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Correct Projected Newton Algorithm

@ In projected Newton methods, we form a quadratic
approximation to the function around x:

Gr(x) 2 fi + (x — x) TV F(xe) + 3(x — xk) T Bi(x — xk)
@ At each iteration, we minimize this function over the set:

minimize  qx(x) subjectto xeC
X

@ NOT the same as projecting the unconstrained Newton step
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Correct Projected Newton Algorithm

@ In projected Newton methods, we form a quadratic
approximation to the function around x:

Gr(x) 2 fi + (x — x) TV F(xe) + 3(x — xk) T Bi(x — xk)
@ At each iteration, we minimize this function over the set:

minimize  qx(x) subjectto xeC
X

@ NOT the same as projecting the unconstrained Newton step

@ This generates a feasible descent direction dy £ x — x
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Correct Projected Newton Algorithm

@ In projected Newton methods, we form a quadratic
approximation to the function around x:

Gr(x) 2 fi + (x — x) TV F(xe) + 3(x — xk) T Bi(x — xk)
@ At each iteration, we minimize this function over the set:

minimize  qx(x) subjectto xeC
X

@ NOT the same as projecting the unconstrained Newton step
@ This generates a feasible descent direction dy £ x — x

@ The method has a quadratic rate of convergence around a
local minimizer [Bertsekas, 1999]
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Projected Newton Algorithm
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Problems with the Projected Newton Algorithm

Unfortunately, the projected Newton method can be inefficient:
o Computing dx may be very expensive

@ Using a general n-by-n matrix By is impratical
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Problems with the Projected Newton Algorithm

Unfortunately, the projected Newton method can be inefficient:
o Computing dx may be very expensive

@ Using a general n-by-n matrix By is impratical

Our algorithm is a projected quasi-Newton algorithm where:
o L-BFGS updates construct a diagonal plus low-rank By
@ SPG efficiently computes dj with this By and projections.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Updates

Quasi-Newton methods work with parameter and gradient
differences between iterations:

A d A
Sk = Xk+1 — Xk an Yk = 8k+1 — 8k
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Updates

Quasi-Newton methods work with parameter and gradient
differences between iterations:

A d A
Sk = Xk+1 — Xk an Yk = 8k+1 — 8k

They start with an initial approximation By = o/, and choose By 1
to interpolate the gradient difference:

Brt1sk = i
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Updates

Quasi-Newton methods work with parameter and gradient
differences between iterations:

A d A
Sk = Xk+1 — Xk an Yk = 8k+1 — 8k

They start with an initial approximation By = o/, and choose By 1
to interpolate the gradient difference:

Brt1sk = i

Since By, 1 is not unique, the BFGS method chooses the matrix
whose difference with By minimizes a weighted Frobenius norm:

T T
Bksks, Bk ykyy
s) Brsk Y sk

Bk41 = Bk —
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L-BFGS: Limited-Memory BFGS

Instead of storing By, the limited-memory BFGS (L-BFGS) method
just stores the previous m differences s, and yj.
[Nocedal 1980, Liu & Nocedal 1989]

These updates applied to By = o/ can be written compactly in a
diagonal plus low-rank form [Byrd et al. 1994]:

Bm = okl — NM™INT

This representations makes multiplication with By cost O(mn).
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SPG: Spectral Projected Gradient

Recall the projected quasi-Newton sub-problem:
minimize i + (x — xk) T VF(x¢) + 3(x — x) T Bi(x — xk)

subject tox € C
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SPG: Spectral Projected Gradient

Recall the projected quasi-Newton sub-problem:
minimize i + (x — xk) T VF(x¢) + 3(x — x) T Bi(x — xk)

subject tox € C

With the L-BFGS representation of By, we can compute the
objective function and gradient in O(mn).

This still doesn't let us efficiently solve the problem
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SPG: Spectral Projected Gradient

Recall the projected quasi-Newton sub-problem:

minimize i + (x — xk) T VF(x¢) + 3(x — x) T Bi(x — xk)

subject tox € C

With the L-BFGS representation of By, we can compute the
objective function and gradient in O(mn).

This still doesn't let us efficiently solve the problem

To solve it, we use the spectral projected gradient (SPG) algorithm.
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SPG: Spectral Projected Gradient

The classic projected gradient takes steps of the form

X1 = Pe(xk — agk)
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SPG: Spectral Projected Gradient

The classic projected gradient takes steps of the form

X1 = Pe(xk — agk)

SPG has two enhancements [Birgin et al. 2000]:
o It uses the Barzilai and Borwein [1988] ‘spectral’ step length:

upp = <}/k717)/k71>
<5k717}’k71>

@ It uses a non-monotone line search [Grippo et al. 1986]
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Barzilai & Borwein Step Size

=== Steepest Descent
=== Barzilai-Borwein
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SPG: Spectral Projected Gradient

@ There is growing interest in SPG for constrained optimization
[Dai & Fletcher 2005, van den Berg & Friedlander 2008]
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SPG: Spectral Projected Gradient

@ There is growing interest in SPG for constrained optimization
[Dai & Fletcher 2005, van den Berg & Friedlander 2008]

@ We apply SPG to minimize the strictly convex constrained
quadratic approximations

o Friedlander et al. [1999] show that SPG has a superlinear
convergence rate for minimizing strictly convex quadratics
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SPG: Spectral Projected Gradient

@ There is growing interest in SPG for constrained optimization
[Dai & Fletcher 2005, van den Berg & Friedlander 2008]

@ We apply SPG to minimize the strictly convex constrained
quadratic approximations

o Friedlander et al. [1999] show that SPG has a superlinear
convergence rate for minimizing strictly convex quadratics

@ Instead of ‘solving’ the sub-problem, we could just perform k
iterations of SPG to improve the steepest descent direction.
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SPG: Spectral Projected Gradient

@ There is growing interest in SPG for constrained optimization
[Dai & Fletcher 2005, van den Berg & Friedlander 2008]

@ We apply SPG to minimize the strictly convex constrained
quadratic approximations

o Friedlander et al. [1999] show that SPG has a superlinear
convergence rate for minimizing strictly convex quadratics

@ Instead of ‘solving’ the sub-problem, we could just perform k
iterations of SPG to improve the steepest descent direction.

@ In this case, solving the sub-problems is in O(mnk), plus the
cost of computing the projection k times.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Projected Newton Algorithm
PQN Algorithm Limited-Memory BFGS Updates

Spectral Projected Gradient

Projection onto Norm-Balls

Outline of the Method

The projected quasi-Newton (PQN) method:
@ Evaluate the current objective function and gradient
@ Add/remove difference vectors for L-BFGS
© Run SPG to compute the projected quasi-Newton direction dj

@ Generate the next iterate with a backtracking line search
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Outline of the Method

The projected quasi-Newton (PQN) method:
@ Evaluate the current objective function and gradient
@ Add/remove difference vectors for L-BFGS
© Run SPG to compute the projected quasi-Newton direction dj

@ Generate the next iterate with a backtracking line search

The overall algorithm will be most effective when:
computing projections is cheaper than evaluating the objective
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© PQN Algorithm
@ Projected Newton Algorithm
@ Limited-Memory BFGS Updates
@ Spectral Projected Gradient
@ Projection onto Norm-Balls
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Projection onto Norm-Balls

We are interested in projecting onto balls induced by norms:
C={x|lxll <7}

This projection can be computed in linear-time for many £,-norms,
such as the »-, {+-, and ¢1-norms [Duchi et al. 2008]
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Projection onto Norm-Balls

Projection onto Norm-Balls

We are interested in projecting onto balls induced by norms:
C={x|lxll <7}

This projection can be computed in linear-time for many £,-norms,
such as the »-, {+-, and ¢1-norms [Duchi et al. 2008]

We are also interested in the case of the mixed p, g-norm balls that
arise in group variable selection:

1/p
p.g = (Z, HXo;Hg)
The group-lasso is the special case where p=1, g = 2:

Ixll12 = 225 (%012

x|
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Projected Newton Algorithm
PQN Algorithm Limited-Memory BFGS Updates

Spectral Projected Gradient

Projection onto Norm-Balls

Projection onto Mixed Norm-Balls

The following proposition leads to an expected linear-time
randomized algorithm for group-lasso projection:

Proposition

Consider c € R" and a set of g disjoint groups {c;}%_; such that
Ujo; ={1,...,n}. Then the Euclidean projection Pc(c) onto the
l1,2-norm ball of radius T is given by

Xo; = sgn(cy;) - wi,  i=1,...,g,

where w = P(v) is the projection of vector v onto the {1-norm
ball of radius T, with v; = ||c,;]|2.
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© Experiments
@ Gaussian Graphical Model Structure Learning
@ Markov Random Field Structure Learning
@ Discussion

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Gaussian Graphical Model Structure Learning
Markov Random Field Structure Learning

Experiments q q
P Discussion

Experiments

We performed several experiments to test the new method:

e We first compared to other extensions of L-BFGS [see paper]
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P Discussion

Experiments

We performed several experiments to test the new method:
e We first compared to other extensions of L-BFGS [see paper]

@ We then compared to state of the art methods for graph
structure learning
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Markov Random Field Structure Learning

Experiments q q
P Discussion

Gaussian Graphical Model Structure Learning

We looked at training a Gaussian graphical model with an /1
penalty on the precision matrix elements to induce a sparse
structure [Banerjee et al. 2006, Friedman et al. 2007]:

mir}]{inaize —log det(K) + tr(£K) + A||K||1,
—
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Gaussian Graphical Model Structure Learning

We looked at training a Gaussian graphical model with an /1
penalty on the precision matrix elements to induce a sparse
structure [Banerjee et al. 2006, Friedman et al. 2007]:
mir}]{inaize —log det(K) + tr(£K) + A||K||1,

—
We used the Gasch et al. [2000] data with the pre-processing of
Duchi et al. [2008], and as with previous work we solve the dual
problem:

max‘jvmize log det(X + W)

subject to S 4+ W =0, [[W]loo < A
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Gaussian Graphical Model Structure Learning

We looked at training a Gaussian graphical model with an /1
penalty on the precision matrix elements to induce a sparse
structure [Banerjee et al. 2006, Friedman et al. 2007]:
mir}]{inaize —log det(K) + tr(£K) + A||K||1,

—
We used the Gasch et al. [2000] data with the pre-processing of
Duchi et al. [2008], and as with previous work we solve the dual
problem:

max‘jvmize log det(X + W)

subject to S 4+ W =0, [[W]loo < A

We compared to a projected gradient method [Duchi et al. 2008].
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Experiments

Gaussian Graphical Model Structure Learning
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Gaussian Graphical Model Structure Learning
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Gaussian Graphical Model Structure Learning with Groups

We also compared the methods when we induce a group-sparse
precision matrix using the ¢ o-norm [Duchi et al. 2008]:

miﬂin’(n)ize —log det(K) + tr(£K) 4+ M| K||1.00,
—
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Gaussian Graphical Model Structure Learning with Groups

We also compared the methods when we induce a group-sparse
precision matrix using the ¢ o-norm [Duchi et al. 2008]:

miﬂin’(n)ize —log det(K) + tr(£K) 4+ M| K||1.00,
—
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Gaussian Graphical Model Structure Learning with Groups

We also used PQN to look at the performance if we replace the
{1 oo-norm [Duchi et al. 2008] with the ¢ >-norm:

miﬂing)ize —log det(K) + tr(£K) 4+ M| K||1.2,
-
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Markov Random Field Structure Learning

Finally, we looked at learning a sparse Markov random field:

minimize — log p(y|w) subject to g [|well2 < 7
w
e
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Markov Random Field Structure Learning

Finally, we looked at learning a sparse Markov random field:

minimize — log p(y|w) subject to g [|Well2 <7
w
e

We used the trinary data from [Sachs et al. 2005], and compared
to Grafting [Lee et al. 2006] and applying SPG to a second-order
cone reformulation [Schmidt et al. 2008].
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45 | | | | |
— PON
4.4 = = = SPG B
1= Graft
4.3 L PQN-SOC|
[0]
=2 424 -
2
o 417 -
2
© 44 L
OX
Ko) . L
e} 3.9
3.8 o
374 -------‘_____‘_-
3.6 T T T T T T T T T

10 20 30 40 50 60 70 80 90 100
Function Evaluations

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Opti g Costly Functions with Simple Constraints



Gaussian Graphical Model Structure Learning
Markov Random Field Structure Learning
Discussion

Experiments

Markov Random Field Structure Learning

4
x10 ! ! ! ! ! ! ! !
Cim - - -
4.3 — PON ‘|
- -G -
42 m om0 Graft L
EEEREK] PQN_SOC

Objective Value

100 200 300 400 500 600 700 800 <900
Function Evaluations

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Opti g Costly Functions with Simple Constraints



Gaussian Graphical Model Structure Learning
Markov Random Field Structure Learning

Experiments q -
P Discussion

Extensions to Other Problems

There are many other cases where we can efficiently compute
projections:
@ Projection onto bounds, hyper-planes, or half-spaces is trivial
@ Projecting onto the probability simplex can be done in
O(nlogn)
@ Projecting onto the positive semi-definite cone involves
truncating the spectral decomposition

@ Projecting onto second-order cones of the form || x|l < y can
be done in O(n)

@ Dykstra's algorithm can be used for combinations of simple
constraints [Dykstra, 1983]
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Extensions to Other Problems

There are many other cases where we can efficiently compute
projections:
@ Projection onto bounds, hyper-planes, or half-spaces is trivial
@ Projecting onto the probability simplex can be done in
O(nlogn)
@ Projecting onto the positive semi-definite cone involves
truncating the spectral decomposition

@ Projecting onto second-order cones of the form ||x||2 < y can
be done in O(n)

@ Dykstra's algorithm can be used for combinations of simple
constraints [Dykstra, 1983]

A similar method can also be used for objectives with a ‘simple’
non-differentiable component.
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Summary

PQN is an extension of L-BFGS that is suitable when:
@ the number of parameters is large
@ evaluating the objective is expensive
© the parameters have constraints
(%)

projecting onto the constraints is substantially cheaper than
evaluating the objective function

We have found the algorithm useful for a variety of problems, and
it is likely useful for others (code online)
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Other Projects

Structure Learning in Conditional Random Fields for Heart
Motion Abnormality Detection

Left Ventricular Segmentation
Short Axis View

|
|| 4-Chambers View
N [+

I

Long Axis View

@ We built a classifier that detects coronary heart disease from
the motion of 16 left ventricle segments in ultrasound video.

@ We use group (1-regularization to simultaneously learn the
parameters and structure of a conditional random field.
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Structure Learning in Conditional Random Fields for Heart
Motion Abnormality Detection

Synthetic CRF data [Schmidt, Murphy, Fung, Rosales. CVPR '08].
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Structure Learning in Conditional Random Fields for Heart
Motion Abnormality Detection

Heart data [Schmidt, Murphy, Fung, Rosales. CVPR '08]
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Relative Classification Accuracy

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Other Projects

Group Sparse Priors for Covariance Estimation

Earlier we discussed learning learning group-sparse GGMs

...,@

What if the correlations between groups aren't completely sparse?
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Earlier we discussed learning learning group-sparse GGMs

...,@

What if the correlations between groups aren't completely sparse?
What if we don’t know the variable groups?
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Group Sparse Priors for Covariance Estimation

Earlier we discussed learning learning group-sparse GGMs

...,@

What if the correlations between groups aren't completely sparse?
What if we don’t know the variable groups?

We give bounds on integrals of priors over the positive-definite
cone, and use them in a variational methods that learns the groups
[Marlin, Schmidt, Murphy, UAI '09]
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Group Sparse Priors for Covariance Estimation

Results on data from the CMU motion capture library:

CMU Test Log-Likelihood

@%ﬁ?ﬁ

=]

Log Likelihood
[
=

Learning a set of groups does better than knowing the groups.
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Group Sparse Priors for Covariance Estimation

Mutual fund data [Scott and Carvalho, 2008]:
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The methods discover the ‘stocks’ and ‘bonds’ groups.
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Optimization Methods for ¢1-Regularization

There are a large number of optimizers for /1-regularization:
@ Coordinate descent

Active set methods

Orthant-wise methods

Smoothing

Bound optimization (EM)

Interior point methods

Projection methods

Many others...

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Other Projects

Optimization Methods for ¢1-Regularization

There are a large number of optimizers for /1-regularization:
@ Coordinate descent

Active set methods

Orthant-wise methods

Smoothing

Bound optimization (EM)

Interior point methods

Projection methods
@ Many others...

In [Schmidt, Fung, Rosales, TR '09], we discuss these methods'’
advantages/disadvantages, and compare them experimentally.
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Conditional random fields (CRFs):
o discriminative model, models neighbor’s correlation
o feature-based edge regularization
@ Markov assumption on labels

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Other Projects

Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Conditional random fields (CRFs):
o discriminative model, models neighbor’s correlation
o feature-based edge regularization
@ Markov assumption on labels

Level set methods:
@ generative model, assumes neighbor independence
@ image-based regularization
o allows non-Markov priors
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Conditional random fields (CRFs):
o discriminative model, models neighbor’s correlation
o feature-based edge regularization
@ Markov assumption on labels

Level set methods:
@ generative model, assumes neighbor independence
@ image-based regularization
o allows non-Markov priors

We embed CRFs within a level set framework
@ a conditional level set method
@ a CRF that allows non-Markov priors
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Experiments on brain tumor segmentation in multi-modal MRI
[Cobzas and Schmidt, CVPR '09]

Level Set CRF/GraphCuts Embedded CRF Expert Label
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Experiments on CT muscle segmentation with a shape prior
[Cobzas and Schmidt, CVPR '09]

Shape Prior Level Set CRF/GraphCuts Embedded CRF Expert Label
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Experiments on CT muscle segmentation with a shape prior
[Cobzas and Schmidt, CVPR '09]
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Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’' problem:
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@ If I see that my watch says 11:55, then it's almost lunch time
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The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’' problem:

@ If I see that my watch says 11:55, then it's almost lunch time

o If | set my watch so it says 11:55, it doesn't help
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Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’' problem:

@ If I see that my watch says 11:55, then it's almost lunch time

o If | set my watch so it says 11:55, it doesn't help

So how should we model interventional data?
@ DAGs can model interventions, but don't allow cycles

@ UGs allow cycles, but can't model interventions
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Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’' problem:

@ If I see that my watch says 11:55, then it's almost lunch time

o If | set my watch so it says 11:55, it doesn't help

So how should we model interventional data?
@ DAGs can model interventions, but don't allow cycles

@ UGs allow cycles, but can't model interventions

We define a model that allows cycles and can model interventions.
[Schmidt and Murphy, UAI '09]
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Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

Synthetic Directed Cyclic Interventional Data
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Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

Interventional Cell Signaling Data [Sachs et al., 2005]
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Causal Learning without DAGs

Causal learning methods are usually evaluated in terms of a ‘true’
underlying DAG.
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Causal Learning without DAGs

Causal learning methods are usually evaluated in terms of a ‘true’
underlying DAG.

For real data, the structure may not be known, or a DAG
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Causal Learning without DAGs

Causal learning methods are usually evaluated in terms of a ‘true’
underlying DAG.

For real data, the structure may not be known, or a DAG

Why not evaluate causal models in terms of predicting the effects
of interventions?
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Causal Learning without DAGs

Causal learning methods are usually evaluated in terms of a ‘true’
underlying DAG.

For real data, the structure may not be known, or a DAG

Why not evaluate causal models in terms of predicting the effects
of interventions?

Given this task, there are a variety of approaches to causality.
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Causal Learning without DAGs

Causal learning methods are usually evaluated in terms of a ‘true’
underlying DAG.

For real data, the structure may not be known, or a DAG

Why not evaluate causal models in terms of predicting the effects
of interventions?

Given this task, there are a variety of approaches to causality.

[Duvenaud, Eaton, Murphy, Schmidt, JMLR WCP '09]
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Causal Learning without DAGs

Interventional Cell Signaling Data [Sachs et al., 2005]:

6.8
6.6
6.4

6.2

5.8
5.6
5.4
5.2

Average Negative Log-Likelihood
=)

2N
: =
Ignore Independent  Conditional  Perfect|
e
THEE
= c o = c = c o o
9] > [7) 9] > >
= e 3 = o = o 3 3

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Other Projects

Causal Learning without DAGs

Predicting the effects of new actions in a SEM:
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