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Motivating Problem: Structure Learning in Discrete MRFs

We want to fit a Markov random field to discrete data y , but
don’t know the graph structure

Y1 Y2?

Y3 Y4

? ?

?

?

?

We can learn a sparse structure by using `1-regularization of
the edge parameters [Wainwright et al. 2006, Lee et al. 2006]
Since each edge has multiple parameters, we use group
`1-regularization
[Bach et al. 2004, Turlach et al. 2005, Yuan & Lin 2006]:

minimize
w

− log p(y |w) subject to
∑

e

||we ||2 ≤ τ
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Optimization Problem Challenges

Solving this optimization problem has 3 complicating factors:

1 the number of parameters is large

2 evaluating the objective is expensive

3 the parameters have constraints

So how should we solve it?

Interior point methods: the number of parameters is too large

Projected gradient: evaluating the objective is too expensive

Quasi-Newton methods (L-BFGS): we have constraints
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Extending the L-BFGS Algorithm

Quasi-Newton methods that use L-BFGS updates achieve state of
the art performance for unconstrained differentiable optimization
[Nocedal 1980, Liu & Nocedal 1989]

L-BFGS updates have also been used for more general problems:

L-BFGS-B: state of the art performance for bound constrained
optimization [Byrd et al. 1995]

OWL-QN: state of the art performance for `1-regularized
optimization [Andrew & Gao 2007].

The above don’t apply since our constraints are not separable

However, the constraints are still simple:

we can compute the projection in O(n)
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Our Contribution

This talk presents an extension of L-BFGS that is suitable when:

1 the number of parameters is large

2 evaluating the objective is expensive

3 the parameters have constraints

4 projecting onto the constraints is substantially cheaper than
evaluating the objective function

The method uses a two-level strategy

At the outer level, L-BFGS updates build a constrained local
quadratic approximation to the function

At the inner level, SPG uses projections to minimize this
constrained quadratic approximation
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Problem Statement and Assumptions

We address the problem of minimizing a differentiable function
f (x) over a convex set C:

minimize
x

f (x) subject to x ∈ C

We assume you can compute the objective f (x), the gradient
∇f (x), and the projection PC(x):

PC(x) = arg min
c

‖c − x‖2 subject to c ∈ C.
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PG: Projected Gradient Algorithm

PG: move towards the projection of the negative gradient

Feasible Set

f(x)

xk
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Naive Projected Newton Algorithm

The problem with projected gradient: slow convergence

Can we speed this up by projecting the Newton direction?
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Naive Projected Newton Algorithm

The problem with projected gradient: slow convergence

Can we speed this up by projecting the Newton direction?

NO! This can point in the wrong direction
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Correct Projected Newton Algorithm

In projected Newton methods, we form a quadratic
approximation to the function around xk :

qk(x) , fk + (x − xk)T∇f (xk) + 1
2(x − xk)TBk(x − xk)

At each iteration, we minimize this function over the set:

minimize
x

qk(x) subject to x ∈ C

NOT the same as projecting the unconstrained Newton step

This generates a feasible descent direction dk , x − xk

The method has a quadratic rate of convergence around a
local minimizer [Bertsekas, 1999]
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Problems with the Projected Newton Algorithm

Unfortunately, the projected Newton method can be inefficient:

Computing dk may be very expensive

Using a general n-by-n matrix Bk is impratical

Our algorithm is a projected quasi-Newton algorithm where:

L-BFGS updates construct a diagonal plus low-rank Bk

SPG efficiently computes dk with this Bk and projections.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Updates

Quasi-Newton methods work with parameter and gradient
differences between iterations:

sk , xk+1 − xk and yk , gk+1 − gk

They start with an initial approximation B0 , σI , and choose Bk+1

to interpolate the gradient difference:

Bk+1sk = yk

Since Bk+1 is not unique, the BFGS method chooses the matrix
whose difference with Bk minimizes a weighted Frobenius norm:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk
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L-BFGS: Limited-Memory BFGS

Instead of storing Bk , the limited-memory BFGS (L-BFGS) method
just stores the previous m differences sk and yk .
[Nocedal 1980, Liu & Nocedal 1989]

These updates applied to B0 = σk I can be written compactly in a
diagonal plus low-rank form [Byrd et al. 1994]:

Bm = σk I − NM−1NT

This representations makes multiplication with Bk cost O(mn).
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SPG: Spectral Projected Gradient

Recall the projected quasi-Newton sub-problem:

minimize
x

fk + (x − xk)T∇f (xk) + 1
2(x − xk)TBk(x − xk)

subject to x ∈ C

With the L-BFGS representation of Bk , we can compute the
objective function and gradient in O(mn).

This still doesn’t let us efficiently solve the problem

To solve it, we use the spectral projected gradient (SPG) algorithm.
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SPG: Spectral Projected Gradient

The classic projected gradient takes steps of the form

xk+1 = PC(xk − αgk)

SPG has two enhancements [Birgin et al. 2000]:

It uses the Barzilai and Borwein [1988] ‘spectral’ step length:

αbb =
〈yk−1, yk−1〉
〈sk−1, yk−1〉

It uses a non-monotone line search [Grippo et al. 1986]

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Projected Newton Algorithm
Limited-Memory BFGS Updates
Spectral Projected Gradient
Projection onto Norm-Balls

SPG: Spectral Projected Gradient

The classic projected gradient takes steps of the form

xk+1 = PC(xk − αgk)

SPG has two enhancements [Birgin et al. 2000]:

It uses the Barzilai and Borwein [1988] ‘spectral’ step length:

αbb =
〈yk−1, yk−1〉
〈sk−1, yk−1〉

It uses a non-monotone line search [Grippo et al. 1986]

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Projected Newton Algorithm
Limited-Memory BFGS Updates
Spectral Projected Gradient
Projection onto Norm-Balls

Barzilai & Borwein Step Size

!15 !10 !5 0 5 10 15

!15

!10

!5

0

5

10

15

 

 

Gradient Descent

Barzilai!Borwein

Barzilai-Borwein
Steepest Descent

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Projected Newton Algorithm
Limited-Memory BFGS Updates
Spectral Projected Gradient
Projection onto Norm-Balls

SPG: Spectral Projected Gradient

There is growing interest in SPG for constrained optimization
[Dai & Fletcher 2005, van den Berg & Friedlander 2008]

We apply SPG to minimize the strictly convex constrained
quadratic approximations

Friedlander et al. [1999] show that SPG has a superlinear
convergence rate for minimizing strictly convex quadratics

Instead of ‘solving’ the sub-problem, we could just perform k
iterations of SPG to improve the steepest descent direction.

In this case, solving the sub-problems is in O(mnk), plus the
cost of computing the projection k times.
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Outline of the Method

The projected quasi-Newton (PQN) method:

1 Evaluate the current objective function and gradient

2 Add/remove difference vectors for L-BFGS

3 Run SPG to compute the projected quasi-Newton direction dk

4 Generate the next iterate with a backtracking line search

The overall algorithm will be most effective when:
computing projections is cheaper than evaluating the objective
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Projection onto Norm-Balls

We are interested in projecting onto balls induced by norms:

C ≡ {x | ‖x‖ ≤ τ}

This projection can be computed in linear-time for many `p-norms,
such as the `2-, `∞-, and `1-norms [Duchi et al. 2008]

We are also interested in the case of the mixed p, q-norm balls that
arise in group variable selection:

‖x‖p,q =
(∑

i ‖xσi‖
p
q

)1/p

The group-lasso is the special case where p = 1, q = 2:

‖x‖1,2 =
∑

i ‖xσi‖2
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Projection onto Mixed Norm-Balls

The following proposition leads to an expected linear-time
randomized algorithm for group-lasso projection:

Proposition

Consider c ∈ Rn and a set of g disjoint groups {σi}gi=1 such that
∪iσi = {1, . . . , n}. Then the Euclidean projection PC(c) onto the
`1,2-norm ball of radius τ is given by

xσi = sgn(cσi ) · wi , i = 1, . . . , g ,

where w = P(v) is the projection of vector v onto the `1-norm
ball of radius τ , with vi = ‖cσi‖2.
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Experiments

We performed several experiments to test the new method:

We first compared to other extensions of L-BFGS [see paper]

We then compared to state of the art methods for graph
structure learning
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Gaussian Graphical Model Structure Learning

We looked at training a Gaussian graphical model with an `1
penalty on the precision matrix elements to induce a sparse
structure [Banerjee et al. 2006, Friedman et al. 2007]:

minimize
K�0

− log det(K ) + tr(Σ̂K ) + λ‖K‖1,

We used the Gasch et al. [2000] data with the pre-processing of
Duchi et al. [2008], and as with previous work we solve the dual
problem:

maximize
W

log det(Σ̂ + W )

subject to Σ̂ + W � 0, ‖W ‖∞ ≤ λ

We compared to a projected gradient method [Duchi et al. 2008].
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Gaussian Graphical Model Structure Learning
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Gaussian Graphical Model Structure Learning with Groups

We also compared the methods when we induce a group-sparse
precision matrix using the `1,∞-norm [Duchi et al. 2008]:

minimize
K�0

− log det(K ) + tr(Σ̂K ) + λ‖K‖1,∞,
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Gaussian Graphical Model Structure Learning with Groups

We also compared the methods when we induce a group-sparse
precision matrix using the `1,∞-norm [Duchi et al. 2008]:
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Gaussian Graphical Model Structure Learning with Groups

We also used PQN to look at the performance if we replace the
`1,∞-norm [Duchi et al. 2008] with the `1,2-norm:

minimize
K�0

− log det(K ) + tr(Σ̂K ) + λ‖K‖1,2,

10
−4

10
−3

10
−2

−542

−540

−538

−536

−534

−532

−530

Regularization Strength (λ)

A
v

e
ra

g
e

 L
o

g
−

Li
k
e

lih
o

o
d

 

 

L
1,2

L
1,∞

L
1

Base

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Gaussian Graphical Model Structure Learning
Markov Random Field Structure Learning
Discussion

Markov Random Field Structure Learning

Finally, we looked at learning a sparse Markov random field:

minimize
w

− log p(y |w) subject to
∑

e

||we ||2 ≤ τ

We used the trinary data from [Sachs et al. 2005], and compared
to Grafting [Lee et al. 2006] and applying SPG to a second-order
cone reformulation [Schmidt et al. 2008].
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Extensions to Other Problems

There are many other cases where we can efficiently compute
projections:

Projection onto bounds, hyper-planes, or half-spaces is trivial

Projecting onto the probability simplex can be done in
O(n log n)

Projecting onto the positive semi-definite cone involves
truncating the spectral decomposition

Projecting onto second-order cones of the form ‖x‖2 ≤ y can
be done in O(n)

Dykstra’s algorithm can be used for combinations of simple
constraints [Dykstra, 1983]

A similar method can also be used for objectives with a ‘simple’
non-differentiable component.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Gaussian Graphical Model Structure Learning
Markov Random Field Structure Learning
Discussion

Extensions to Other Problems

There are many other cases where we can efficiently compute
projections:

Projection onto bounds, hyper-planes, or half-spaces is trivial

Projecting onto the probability simplex can be done in
O(n log n)

Projecting onto the positive semi-definite cone involves
truncating the spectral decomposition

Projecting onto second-order cones of the form ‖x‖2 ≤ y can
be done in O(n)

Dykstra’s algorithm can be used for combinations of simple
constraints [Dykstra, 1983]

A similar method can also be used for objectives with a ‘simple’
non-differentiable component.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Gaussian Graphical Model Structure Learning
Markov Random Field Structure Learning
Discussion

Summary

PQN is an extension of L-BFGS that is suitable when:

1 the number of parameters is large

2 evaluating the objective is expensive

3 the parameters have constraints

4 projecting onto the constraints is substantially cheaper than
evaluating the objective function

We have found the algorithm useful for a variety of problems, and
it is likely useful for others (code online)
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Structure Learning in Conditional Random Fields for Heart
Motion Abnormality Detection

We built a classifier that detects coronary heart disease from
the motion of 16 left ventricle segments in ultrasound video.

We use group `1-regularization to simultaneously learn the
parameters and structure of a conditional random field.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Structure Learning in Conditional Random Fields for Heart
Motion Abnormality Detection

Synthetic CRF data [Schmidt, Murphy, Fung, Rosales. CVPR ’08].
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Structure Learning in Conditional Random Fields for Heart
Motion Abnormality Detection

Heart data [Schmidt, Murphy, Fung, Rosales. CVPR ’08]
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Group Sparse Priors for Covariance Estimation

Earlier we discussed learning learning group-sparse GGMs

What if the correlations between groups aren’t completely sparse?
What if we don’t know the variable groups?

We give bounds on integrals of priors over the positive-definite
cone, and use them in a variational methods that learns the groups
[Marlin, Schmidt, Murphy, UAI ’09]
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Group Sparse Priors for Covariance Estimation

Results on data from the CMU motion capture library:

Learning a set of groups does better than knowing the groups.
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Group Sparse Priors for Covariance Estimation

Mutual fund data [Scott and Carvalho, 2008]:

The methods discover the ‘stocks’ and ‘bonds’ groups.
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Optimization Methods for `1-Regularization

There are a large number of optimizers for `1-regularization:

Coordinate descent

Active set methods

Orthant-wise methods

Smoothing

Bound optimization (EM)

Interior point methods

Projection methods

Many others...

In [Schmidt, Fung, Rosales, TR ’09], we discuss these methods’
advantages/disadvantages, and compare them experimentally.
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Conditional random fields (CRFs):

discriminative model, models neighbor’s correlation
feature-based edge regularization
Markov assumption on labels

Level set methods:

generative model, assumes neighbor independence

image-based regularization

allows non-Markov priors

We embed CRFs within a level set framework

a conditional level set method

a CRF that allows non-Markov priors
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Experiments on brain tumor segmentation in multi-modal MRI
[Cobzas and Schmidt, CVPR ’09]

Active Regions CRF Cont CRF Expert Label
Figure 3. Comparative results for brain tumor segmentation. Selected slices are shown while the segmentation was done in 3D. Jaccard

scored are displayed at the top left.

it can change drastically with minor changes in the model).
A more robust estimate would be to use the most likely la-
bel for each pixel (rather than the jointly most likely assign-
ment of labels), but currently we know of no exact meth-
ods for finding the marginally most likely labels for image-
sized data (we tried to approximate this using loopy belief
propagation, and found that in roughly half the patients it
achieved a similar score to the continuous CRF). In contrast
to the optimal discrete decoding that can potentially change
drastically with small changes to the model, there must be
continuity around a (local) minimum found by continuous
energy minimization, indicating that the minimum is insen-
sitive to minor perturbations.

5.2. Skeletal muscle segmentation

Our second medical imaging application was skeletal
muscle segmentation in 37 CT abdominal scans of 18 can-
cer patients. Two consecutive 2D axial CT images at the

level of L3 were selected for each patient and manually seg-
mented by medical experts. These images have a resolution
of 200 × 150.

We used two features: the original CT image and the nor-
malized distance from the outer body boundary. Training
was again done in two folds and the level set was initialized
with the body boundary. Both continuous models incorpo-
rate the shape prior discussed in Section 4.3, while the CRF
does not. The shape prior is shown in Figure 4 (Left).

A selection of results with corresponding Jaccard scores
are displayed in Figure 4, while scores across the patients
are summarized in Figure 5. The muscle tissue has a
very similar appearance to the enclosed internal organs and
therefore cannot be segmented entirely based on its appear-
ance signature, as shown by the poor performance of the
discrete CRF model. The shape prior used in the continuous
models helps disambiguate muscle from organ tissue, while
the discriminative model has a better appearance model and

Level Set CRF/GraphCuts Embedded CRF Expert Label
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Experiments on CT muscle segmentation with a shape prior
[Cobzas and Schmidt, CVPR ’09]

Shape prior Active Regions CRF Cont CRF Expert Label
Figure 4. Comparative results for skeletal muscle segmentation. Left: Shape prior used by the continuous models. Jaccard scores are

displayed on the top left.
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Figure 5. Test image Jaccard scores (A ∩ B/A ∪ B) for muscle

segmentation in CT images with three different methods for 37

different scans across 18 patients. The scans are sorted by the

maximum score achieved across the methods.

outperforms the generative one. For this data set, the con-
tinuous CRF obtained the highest score in 31 of the 37 vol-
umes.

6. Discussion

There has been a previous attempt to couple a CRF with
an active contour model [22], extending previous work on
integrating probabilistic deformable models with Markov
random fields [11]. The main difference between our work
and this previous work is subtle but very important; in [22],
the model requires an ‘image prior’ that represents the dis-
tribution over images, and due to the complexity of images
this is extremely complicated to specify. In [22], they use
an image prior that factorizes into independent Gaussians

at each pixel (ie. an ‘average’ image is scaled white noise,
and realistic images are extremely unlikely). The model in
[11] similarly requires a distribution over images given the
labels. The key feature of CRFs is that they condition on
the image (treating it as a fixed observation), and do not
need an image prior. Although [22] uses a CRF as part of a
larger model, the model doesn’t take advantage of this key
feature because the full model still needs an image prior.
This distinction is important when we want to enhance dis-
crimination by using relevant ‘features’ instead of just pixel
values. In [22] you would need a ’feature prior’, specify-
ing the distribution over the features, which might be even
harder than specifying a realistic distribution over images.
In our model, we can use arbitrary features without needing
to account for their probability, and we obtain a standard
CRF model (at the appropriate discretization level) in the
special case where no additional continuous regularizer is
incorporated.

We would like to note another important differences be-
tween our method and the previous work. We address
the issue of joint parameter estimation from training data,
formulating it as a convex optimization. The quantitative
evaluation in [22] used manual initialization of the contour
for each image to be segmented (similar to most previous
work on level set methods), while our experiments tested on
the arguably much more difficult task of segmenting com-
pletely new images with automatic initialization of the con-
tour.

The edge potentials defined by the associative model
in Section 4 obey the submodularity constraint I(0, 0) +
I(1, 1) ≥ I(1, 0) + I(0, 1) (since vT fij(X) ≥ 0), and
therefore the optimal decoding of this model can be for-
mulated as a graph cut problem [13]. Our continuous in-
terpretation of the CRF is therefore connected to the work
of Boykov and Kolmogorov on geo-cuts [2, 12], graph cuts

Level Set CRF/GraphCuts Embedded CRF Expert LabelShape Prior
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Increased Discrimination in Level Set Methods with
Embedded Conditional Random Fields

Experiments on CT muscle segmentation with a shape prior
[Cobzas and Schmidt, CVPR ’09]

5 10 15 20 25 30 35

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc a n

Ja
c

c
ar

d 
Sc

or
e

 

 
C o nt C RF
C RF
A c tiv e  Re g io ns

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Other Projects

Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

The difference between conditioning by observation and
conditioning by intervention in the ‘hungry at work’ problem:

If I see that my watch says 11:55, then it’s almost lunch time

If I set my watch so it says 11:55, it doesn’t help

So how should we model interventional data?

DAGs can model interventions, but don’t allow cycles

UGs allow cycles, but can’t model interventions

We define a model that allows cycles and can model interventions.
[Schmidt and Murphy, UAI ’09]
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Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

Synthetic Directed Cyclic Interventional Data
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Modeling Discrete Interventional Data using Directed
Cyclic Graphical Models

Interventional Cell Signaling Data [Sachs et al., 2005]
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Causal Learning without DAGs

Causal learning methods are usually evaluated in terms of a ‘true’
underlying DAG.

For real data, the structure may not be known, or a DAG

Why not evaluate causal models in terms of predicting the effects
of interventions?

Given this task, there are a variety of approaches to causality.

[Duvenaud, Eaton, Murphy, Schmidt, JMLR WCP ’09]
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Causal Learning without DAGs

Interventional Cell Signaling Data [Sachs et al., 2005]:
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Causal Learning without DAGs

Predicting the effects of new actions in a SEM:
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