Why does Adam work so well for LLMs? And can we find optimal per-variable step sizes?

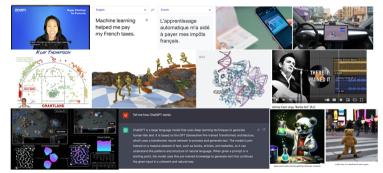
Mark Schmidt Work led by <u>Frederik Kunstner</u> in collaboration with Jacques Chen, J. Wilder Lavington (heavy-tailed noise). Robin Yadav, Alam Milligan, Alberto Bietti (heavy-tailed labels). Victor S. Portella, and Nick Harvey (multi-dimensional backtracking)

University of British Columbia

February 18, 2025

Machine Learning is Changing the World

- Machine learning (ML) is tool we use to analyze unprecedented amount of data.
 - We use ML every day in a variety of applications.



- Enormous new applications potential (health, engineering, science, and so on).
- Fundamental ML advances can impact many applications (as with ChatGPT).

Machine Learning with SGD and Adam

- "Learning" in most machine learning models is numerical optimization.
 - Trying to find parameters that minimize a cost function.
- Most popular choices of numerical optimizers are (from empirical work):
 - SGD (stochastic gradient descent) with momentum.
 - Adam (adaptive moment estimation) optimizer (and variants).
- I would argue that we do not know have a good understanding of why these work.
 - $\bullet~{\rm SGD}$ + momentum has justification in some simplified settings.
 - No theoretical justification for why Adam is sometimes faster than SGD.
- Research topics we explore in this talk:
 - Why is Adam faster than SGD for language models?
 - Could we design a theoretically optimal adaptive method?

Stochastic Gradient Descent (SGD)

• For a minimizing a function f with parameters w, SGD with momentum uses:

$$w_{k+1} = \underbrace{w_k - \alpha_k g(w_k)}_{\text{SGD}} + \underbrace{\beta(w_k - w_{k-1})}_{\text{momentum}},$$

- The iterate w_k is our guess of parameters on iteration k.
- The step size α_k affects how far we move on iteration k.
- The direction $g(w_k)$ is an unbiased estimate of the gradient of the expectation.
 - Usually, $g(w_k)$ is the gradient of a randomly-chosen example or mini-batch.
- The momentum rate β is how much we weight previous direction.

The Adam Optimizer

• The Adam optimizer (ignoring "bias correction"):

$$\begin{split} \mu_{k+1} &= \beta_1 \mu_k + (1 - \beta_1) g(w_k) & (\text{update momentum}) \\ v_{k+1} &= \beta_2 v_{k-1} + (1 - \beta_2) g(w_k) \circ g(w_k) & (\text{per-variable step size}) \\ w_{k+1} &= w_k - \alpha V_{k+1}^{-1} \mu_{k+1}. & (\text{second-order-ish update}) \end{split}$$

- Often interpreted as a Newton-like method (V_k looks likes a preconditioner).
- But if you remove the averages it is sign descent,

$$w_{k+1} = w_k - \alpha \operatorname{sign}(\nabla f(w_k)),$$

which is not consistent with Newton in general.

• Indeed, we do not havea good understanding of when/why Adam works.

The Perplexity of the Adam Optimizer

• Adam is one of the most-cited works of all time across all fields:

[спатном] Adam: A method for stochastic optimization <u>DP Kingma</u> - arXiv preprint arXiv:1412.6980, 2014 ☆ Save 勁 Cite Cited by 202984 Related articles

- Adam does not converge in general and fails on many simple problems.
 - "the most cited paper in all of optimization [...] proves an incorrect theorem with an unparsable convergence bound" [Ben Recht].
 - And many algorithms that "fix" its convergence are slower than original method.
- But for many difficult problems no other algorithm consistently beats it.
 - Only 1 method beat Adam "baseline" variant in AlgoPerf self-tuning competition.
 - But winning method was an Adam variant with more-clever step sizes.

Adam on Natural Language vs. Computer Vision

- Adam versus SGD on language compared to vision:
 - Adam does not tend to outperform SGD on computer vision benchmarks.
 - Adam tends to outperform SGD by a wide margin on language benchmarks.

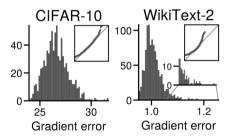


Why is Adam faster on Language but not Vision?

- Adam is often applied to over-parameterized models?
 - Explains why Adam is fast, but not why it is faster than SGD.
- Adam has more hyper-parameters to tune than SGD.
 - True, but vision has same hyper-parameters.
- Adam approximates second-order information?
 - Maybe, but why would sign-like update only do this for language models?
- Adam co-evolved with network architectures?
 - True, but vision architectures have been changing too.
- Adam was sent from the future to speed progress in language models?

Heavy-Tailed Noise Hypothesis

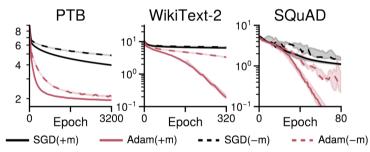
• Language models tend to have heavier-tailed noise than vision models.



• Maybe Adam handles heavy-tailed noise better than SGD?

Heavy-Tailed Noise does NOT Explain the Gap

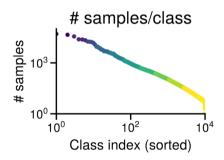
- We tested the heavy-tailed hypothesis by removing the noise.
 - By converging to using the entire dataset to estimate gradients.



This should reduce gap, but instead gap gets bigger as you remove noise.
So gap cannot be due to noise.

New Hypothesis: Heavy-Tailed Labels

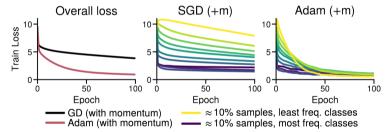
- Vision datasets usually have balanced labels.
 - 1000 cat images, 1000 dog images, 1000 car images, and so on.
- But language datasets have heavy tailed labels.



- Word "the" appears a ton, but most words are rare.
- Could this help explain the gap?

Heavy-Tailed Labels

- SGD makes slow progress on rare labels.
 - So if most labels are rare, SGD converges slowly.

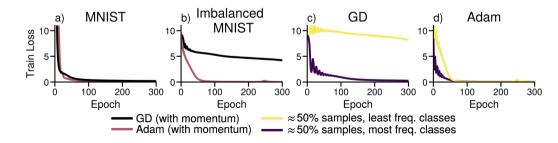


- Adam makes similar progress on all labels.
 - So if most labels are rare Adam still makes progress.

Testing Heavy-Tailed Label Predictions

• What tests could we do to support/refute heavy-tailed label explanation of gap?

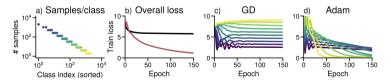
- What happens if you make a computer vision dataset with heavy-tailed labels?
 - For example, make a version of MNIST with a large portion of rare labels.
 - Gap appears: Adam converge faster than SGD.



Testing Heavy-Tailed Label Predictions

• What tests could we do to support/refute heavy-tailed label explanation of gap?

- What happens if you make a computer vision dataset with heavy-tailed labels?
 - For example, make a version of MNIST with a large portion of rare labels.
 - Gap appears: Adam converge faster than SGD.
- What about a linear model with heavy-tailed labels?
 - For example, generate synthetic data with label frequency $\pi_k \propto 1/k$.
 - Gap appears: simplified setting that might lead to better theory and/or algorithms.



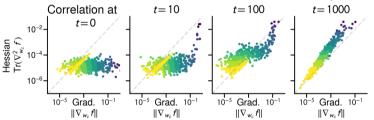
Testing Heavy-Tailed Label Predictions

• What tests could we do to support/refute heavy-tailed label explanation of gap?

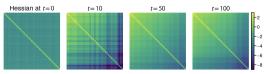
- What happens if you make a computer vision dataset with heavy-tailed labels?
 - For example, make a version of MNIST with a large portion of rare labels.
 - Gap appears: Adam converge faster than SGD.
- What about a linear model with heavy-tailed labels?
 - For example, generate synthetic data with label frequency $\pi_k \propto 1/k$.
 - Gap appears: simplified setting that might lead to better theory and/or algorithms.
- Could we improve SGD on language models by accounting for label distribution?
 - One strategy is to upweight loss of low-frequency examples.
 - Improves performance of SGD, but changes location of minimum.
 - Unless interpolating data.

Mechanism: Gradient-Hessian and Diagonal Dominance

- Why would sign descent be a good curvature estimate?
- Gradient and Hessian elements become correlated across classes (not universal):



• Hessian becomes dominated by diagonal blocks:



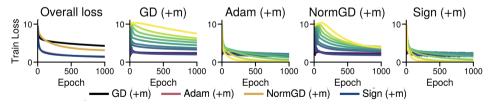
Towards a theory: Sign Descent

• In searching for a theory, we sought a simpler algorithm acting like Adam.

• For large batches, Adam is similar to sign descent plus momentum.

$$w_{k+1} = w_k - \alpha \operatorname{sign}(\nabla f(w_k)) + \beta(w_k - w_{k-1}),$$

- Our experiments show this is sufficient to get the improved performance of Adam:
 - But normalized gradient does not perform like Adam.



• Google Brain later "symbolically discovered" that such methods are effective (Lion).

Towards a theory: Sign Descent

• Can you ever prove that sign descent is faster than gradient descent?

• Yes, on the continuous flow in a very-simplified setting:

Theorem 3. On the simple imbalanced setting, gradient flow and continuous time sign descent initialized at $\mathbf{W} = 0$ minimize the loss of class k, $\ell_k(t) = -\log(\sigma(\mathbf{W}(t)\mathbf{e}_k)_k)$, at the rate

Gradient flow: $\ell_k(t) = \Theta(1/\pi_k t)$, Continuous time sign descent: $\ell_k(t) = \Theta(e^{-ct})$.

- Gradient descent has a sublinear rate, with worse constants for rare classes.
- Normalized gradient has a linear rate.
- Sign descent has a linear rate, and is invariant to class distributions.

Heavy-Tailed Labels vs. Class Imbalance and Sparse Features

- Is the issue just due to class imbalance or sparse features?
 - No, class imbalance and sparse features can happen even with binary labels.
 - Heavy-tailed labels slowing down SGD is only seen with many possible labels.
- Class imbalance:
 - If 99% of examples are in one class, this class imbalance does not slow down SGD.
 - Will slowly learn minority class, but SGD still makes fast progress on overall loss.
 - Issue with heavy-tailed labels is that most examples are from rare classes.
- Sparse features:
 - Original AdaGrad paper considered sparse-but-informative features.
 - Can also lead to a gap.
 - Graph neural networks have SGD-Adam gap but not heavy-tailed labels.
 - But heavy-tailed labels do not require sparse features (input vs. output layer).
 - It is likely that type of sparsity in intermediate layers can also be important.

Outline

1 Why does Adam work?

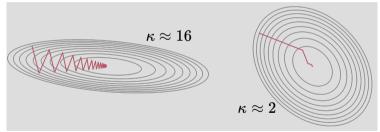
2 Multi-Dimensional Backtracking

Diagonal Preconnditioning: Per-Variable Step Sizes

• Adam and many related methods use a step size for each variable

$$w_{k+1} = w_k - a_k \circ \nabla f(w_k).$$

• We can view this as gradient descent with re-scaled variables:



- Preserves O(d) cost and can make the algorithm converge arbitrarily faster.
- This is also known as diagonal preconditioning.
 - Has large literature in numerical linear algebra, dating to Jacobi in 1845.
 - Name "preconditioning" dates to Turing in 1940s.

Hyper-Gradient Descent

- Hyper-gradient descent is an alternative to Adam for setting a_k :
 - Take the gradient with respect to the step sizes, $\nabla_{a_k} f(w_k a_k \circ \nabla f(w_k))$.
 - Do gradient descent on the step sizes, $a_{k+1} = a_k \gamma \nabla_{a_k} f(w_k a_k \circ \nabla f(w_k))$.
- Has been reinvented many times over the last 60 years:

(Maclaurin et al., 2015). Methods have been proposed to tune the step-size (Masse and Ollivier, 2015), a preconditioner (Moskovitz et al., 2019), any hyperparameter (Baydin et al., 2018), or to maintain a model of the objective (Bae et al., 2022). "Stacking" such optimizers recursively has been shown to reduce the dependency on user-specified hyperparameters in practice (Chandra et al., 2022). This idea pre-dates the hypergradient nomenclature; Kesten (1958) presents a method to update the step-size based on the sign of successive gradients, and Saridis (1970) presents a control perspective for per-coordinate step-sizes, which can be cast as a hypergradient update to a diagonal preconditioner.¹ This approach has led to *adaptive gain* methods such as Delta-Delta and variants (Barto and Sutton, 1981; Jacobs, 1988; Silva and Almeida, 1990; Sutton, 1992a,b), and further developed using the sign of the hypergradient (Riedmiller and Braun, 1993), full-matrix updates (Almeida et al., 1999), a larger history (Plagianakos et al., 2001), updates in log-space (Schraudolph, 1999; Schraudolph et al., 2005), heuristics to adjust the outer step-size (Mahmood et al., 2012), or multiplicative weight updates (Almeida et al., 2022). While showing promising practical performance in some settings, existing methods are

- Arguably, at the moment it "only works in papers".
 - No version has seen widespread use.
 - Can be sensitve to the step size(s) used on the hyper-gradients.
 - Even if stable, no guarantee it would converge faster*.

Do we have good diagonal preconditioners?

- Consider the following textbook problem:
 - Minimize a smooth and strongly-convex function ($\mu I \preceq \nabla^2 f(w) \preceq LI$).
- Gradient descent with optimal step size achieves an error after k iterations of

$$f(w_k) - f_* \le \left(1 - \frac{1}{\kappa}\right)^k [f(x_0) - f_*],$$

and practical algorithms perform within constant factor of this rate (next slide).

- Nesterov acceleration replaces condition number κ with $\sqrt{\kappa}.$
- Optimal diagonal preconditioner replaces κ with $\tilde{\kappa}$.
 - Condition number under best re-scaling of variables.
 - Note that $\tilde{\kappa}$ can be arbitrarily smaller than κ .
- However, no existing method performs within a known factor of $\tilde{\kappa}$ rate.
 - AdaGrad, Adam, hyper-gradient descent, diag(Hessian), quasi-Newton, and so on.
- This work: multidimensional backtracking.
 - First method performing within known factor of $\tilde{\kappa}$ rate.

Classic Backtracking

- Consider the following backtracking procedure to a single step size:
 - Start with a large guess α .
 - Test if w_{k+1} using this α satisfies a sufficient decrease condition

$$f(w_{k+1}) \le f(w_k) - \frac{\alpha}{2} \|\nabla f(w_k)\|^2.$$

- $\bullet\,$ If not, divide α in half and try again until it is satisfied.
 - \bullet "Valid" step size: α small enough to satisfy sufficient decrease everywhere.
- This procedure gets the rate of the optimal step size up to a factor of 2,

$$f(w_k) - f_* \le \left(1 - \frac{1}{2\kappa}\right)^k [f(x_0) - f_*].$$

- Many variations exist, and a I do not recommend this exact procedure in practice.
 - For neural nets, above procedure can make sharpness explode.
 - Polyak and Malitsky-Mischenko step sizes: no bactracking and have factor of 4.
 - Non-monotone line-search works better and seems to avoid sharpness explosion.

"Cutting a Set" view of Classic Backtracking

- An alternative way to interpret backtracking based on sets:
 - We maintain an interval $[0, \alpha_{\max}]$ known to contain optimal step size α_* .

- As our guess for $\alpha_*,$ we try the step size $\alpha=\alpha_{\max}/2.$
- If $\alpha_{\max}/2$ violates sufficient decrease, we cut the interval by setting $\alpha_{\max} = \alpha$.

$$0 \qquad \frac{lpha_{\max}}{4} \ lpha_{*} \quad \frac{lpha_{\max}}{2}$$

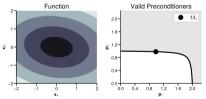
- Maintains that $\alpha_{\max} \ge \alpha_*$ (optimal is in set), and that $\alpha \ge \alpha_*/2$ (not too small).
- But in practice often get lucky and can use a much larger step size than α_* .

Generalizing to more than one step size

• We can define sufficient decrease for valid per-variable step sizes a,

$$f(w_{k+1}) \le f(w_k) - \frac{1}{2} \langle \nabla f(w_k), a \circ \nabla f(w_k) \rangle.$$

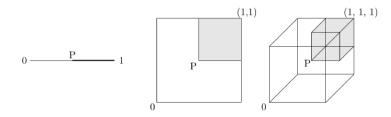
- With *d* per-variable step sizes the interval is replaced by a *d*-dimensional space.
 - Each point in space is a set of d per-variable step sizes.
 - Two-dimensional example where first variable can use a larger step size:



- If set of step sizes a is invalid, what parts of the space can we rule out?
- If set of step sizes a is invalid, where should we search next?
- Can we maintain the O(d) cost?

Sufficient Decrease and Curse of Dimensionality

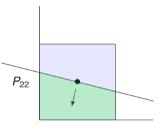
- For invalid step sizes, increasing any step size remains invalid.
- Used by classic backtracking, but not very informative in higher dimensions:



- Sufficient decrease does not rule out much space.
- Do not know whether you can "increase one variable while decreasing another".

Multi-Dimensional Backtracking with Hyper-Gradients

- Key insight behind multi-dimensional backtracking for convex problems:
 - Hyper-gradient gives a separating hyper-plane on valid step sizes.
 - Speficially, gradient of sufficient decrease condition with respect to step sizes.

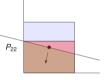


 P_{11}

- If we have a set containing optimal preconditioners:
 - If a preconditioner is invalid, hyper-gradient tells us direction of valid preconditioners.
- Allows you to cut off large parts of the space even in high dimensions.

Efficient Multi-Dimensional Backtracking

- We do not want to store/manipulate a set of cutting planes.
- Consider the box method of just storing largest box containing current plane.



 P_{11}

 \bullet Backtracking along all coordinates from largest point in box by 2d gives a rate

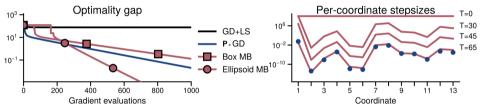
$$f(w_k) - f_* \le \left(1 - \frac{1}{2d\tilde{\kappa}}\right)^k [f(x_0) - f_*].$$

• Paper also gives improved method using axis-aligned ellipsoids:

• Improves factor of d to \sqrt{d} while maintaining O(d) iteration cost.

Multi-Dimensional Backtracking for Linear Regression

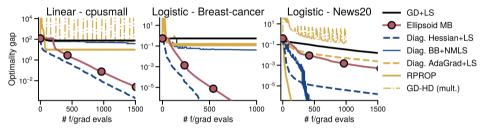
- Comparison of methods for linear regression.
 - We can expensively compute optimal preconditioner in this setting.



- Box method converges to be close to optimal preconditioner.
- For this problem we have $\kappa=10^{14}, \sqrt{\kappa}=10^7, \tilde{\kappa}=10^2.$
 - So diagonal preconditioning helps much more than acceleration.
- Ellipsoid method outperforms optimal preconditioner.
 - "Got lucky" and made extra progress with invalid preconditioners (which is typical).

Multi-Dimensional Backtracking for Logistic Regression

• Comparison to adaptive preconditioning methods for logistic regression:



- MDB tends to find a good preconditioner when there is one.
 - But is sometimes outperformed by current practical algorithms.
- Like quasi-Newton, but tries to maximize progress and not approximate Hessian.
 - Approximating Hessian is only the right thing to do asymptotically.

Open Problems

- Relaxing strong convexity.
 - Paper considers PL functions, unclear how to handle general non-convex.
- Practical implementation details.
 - Only trick in experiments was multiplying all step sizes by 1.1 after accepted steps.
 - More-clever forward tracking and/or combining with existing tricks.
 - Generalizing to consider momentum and stochastic gradients.
- Reducing \sqrt{d} factor.
 - Easy to get best of classic and multi-dimensional backtracking.
 - Could interpolate between classic and multi-dimensional with groups of variables.
 - Recent online scaling work of Gao et al. [2024].
 - Use online learning for hyper-gradient descent to remove \sqrt{d} asymptotically.
- Connecting to non-asymptotic dense quasi-Newton results [Jin et al., 2024].
 - Initially slower than MDB but eventually faster, though with expensive iterations.

Overall Talk Summary

- Diagonal preconditioning methods like Adam are wildly popular.
- Effectiveness does not seem to be due to how they handle noise.
- Effectiveness of Adam seems to be largely due to heavy-tailed labels.
 Large fraction of examples have rare labels.
- We gave the first diagonal preconditioning method with optimality guarantees.
 Multi-dimensional backtracking uses cutting planes to rule out sets of step sizes.

• Thank you for the invite and coming to listen.