Contents
Description of demo_binaryclass_GLM.m
Uses various link functions in a Generalized Linear Model for binary classification
clear all close all generateData_vert
usage of logistic regression
options_lg = []; options_lg.addBias = 1; model_lg = ml_binaryclass_logistic(Xtrain, ytrain, options_lg); yhat_lg = model_lg.predict(model_lg, Xtest); testError_lg = mean(yhat_lg ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_lg.name, testError_lg); figure; plot2DClassifier(Xtrain, ytrain, model_lg);
Averaged misclassification test error with Logistic Regression is: 0.009

usage of probit loss binary classification
options_pb = []; options_pb.addBias = 1; options_pb.lambdaL2 = 1e-4; model_pb = ml_binaryclass_probit(Xtrain, ytrain, options_pb); yhat_pb = model_pb.predict(model_pb, Xtest); testError_pb = mean(yhat_pb ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_pb.name, testError_pb); figure; plot2DClassifier(Xtrain, ytrain, model_pb);
Averaged misclassification test error with Probit Loss Binary Classification is: 0.013

usage of Cauchit loss binary classification
options_cc = []; model_cc = ml_binaryclass_Cauchit(Xtrain, ytrain, options_cc); yhat_cc = model_cc.predict(model_cc, Xtest); testError_cc = mean(yhat_cc ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_cc.name, testError_cc); figure; plot2DClassifier(Xtrain, ytrain, model_cc);
Averaged misclassification test error with Cauchit Loss Binary Classification is: 0.022

usage of extreme loss binary classification
options_ex = []; model_ex = ml_binaryclass_extreme(Xtrain, ytrain, options_ex); yhat_ex = model_ex.predict(model_ex, Xtest); testError_ex = mean(yhat_ex ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_ex.name, testError_ex); figure; plot2DClassifier(Xtrain, ytrain, model_ex);
Averaged misclassification test error with Extreme Loss Binary Classification is: 0.058
