Contents
Description of demo_multiclass_KDE.m
Demonstrates generative kernel density estimation with RBF and polynomial kernels, with a Gaussian maximum likelihood fit as baseline
clear all close all generateData_clustersXonly
usage of generative Gaussian model
options_gs = [];
model_gs = ml_generative_Gaussian(Xtrain, ytrain, options_gs);
figure;
plotPDF(Xtrain, model_gs);
title('Generative Gaussian Model');

usage of generative RBF kernel density estimation model
options_kde = []; options_kde.kernelOptions = struct('sigma',.75); model_kde = ml_generative_KDE(Xtrain, ytrain, options_kde); figure; title('Generative RBF Kernel Density Estimation Model'); plotPDF(Xtrain, model_kde);

usage of generative polynomial kernel density estimation model
options_kde_poly = []; options_kde_poly.kernelOptions = struct('order',3,'bias',1); options_kde_poly.kernelOptions.kernelFunc = @ml_kernel_poly; model_kde_poly = ml_generative_KDE(Xtrain, ytrain, options_kde_poly); figure; title('Generative Poly Kernel Density Estimation Model'); plotPDF(Xtrain, model_kde_poly);
