Contents
Description demo_multiclass_SVM.m
Demonstrates multiclass classification using SVM with two methods of formulating the constrained optimization problem, N-slack and NK-slack
clear all close all generateData_5grid
usage of N-slack SVM classification
options_svm1 = []; options_svm1.addBias = 1; options_svm1.slack = 'n'; model_svm1 = ml_multiclass_SVM(Xtrain, ytrain, options_svm1); yhat_svm1 = model_svm1.predict(model_svm1, Xtest); testError_svm1 = mean(yhat_svm1 ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_svm1.name, testError_svm1);
Averaged misclassification test error with N-Slack SVM Classification is: 0.089
usage of NK-slack SVM classification
options_svm2 = []; options_svm2.addBias = 1; options_svm2.slack = 'nk'; model_svm2 = ml_multiclass_SVM(Xtrain, ytrain, options_svm2); yhat_svm2 = model_svm2.predict(model_svm2, Xtest); testError_svm2 = mean(yhat_svm2 ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_svm2.name, testError_svm2);
Averaged misclassification test error with NK-Slack SVM Classification is: 0.204
figure; plotClassifier(Xtrain, ytrain, model_svm1); figure; plotClassifier(Xtrain, ytrain, model_svm2);

