Contents
Description of demo_multiclass_bagging.m
Demonstrates bagging of multinomial logistic regression classifiers for a multiclass classification task
clear all close all generateData_gridMulti
usage of multi-class logistic regression
options_lg = []; options_lg.addBias = 1; model_lg = ml_multiclass_logistic(Xtrain, ytrain, options_lg); yhat_lg = model_lg.predict(model_lg, Xtest); testError_lg = mean(yhat_lg ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n',... model_lg.name, testError_lg);
Averaged misclassification test error with Multiclass Logistic Classification is: 0.333
usage of multi-class logistic regression with bagging
options_bg = []; options_bg.nModels = 20; options_bg.subModel = @ml_multiclass_logistic; options_bg.subOptions.addBias = 1; model_bg = ml_multiclass_bagging(Xtrain, ytrain, options_bg); yhat_bg = model_bg.predict(model_bg, Xtest); testError_bg = mean(yhat_bg ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n',... model_bg.name, testError_bg)
Averaged misclassification test error with Classification with Bagging is: 0.298
figure; plotClassifier(Xtrain, ytrain, model_lg); figure; plotClassifier(Xtrain, ytrain, model_bg);

