Contents
Description of demo_multiclass_binarysubclassifiers.m
Multiclass classification using binary classification subclassifiers with 1-vs-1 or 1-vs-all design
clear all close all generateData_5grid
usage of 1-vs-all algorithm on binary logistic classifier
options_1va = []; options_1va.subModel = @ml_binaryclass_logistic; model_1va = ml_multiclass_1vA(Xtrain, ytrain, options_1va); yhat_1va = model_1va.predict(model_1va, Xtest); testError_1va = mean(yhat_1va ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_1va.name, testError_1va);
Averaged misclassification test error with 1-vs-All Classification is: 0.147
usage of 1-vs-1 algorithm on binary logistic classifier
options_1v1 = []; options_1v1.subModel = @ml_binaryclass_logistic; model_1v1 = ml_multiclass_1v1(Xtrain, ytrain, options_1v1); yhat_1v1 = model_1v1.predict(model_1v1, Xtest); testError_1v1 = mean(yhat_1va ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_1v1.name, testError_1v1);
Averaged misclassification test error with 1-vs-1 Classification is: 0.147
figure; plotClassifier(Xtrain, ytrain, model_1va); figure; plotClassifier(Xtrain, ytrain, model_1v1);

