Contents
- Description of demo_multiclass_decisions.m
- usage of stump classification (binary data)
- usage of decision tree classification (binary data)
- usage of stump classification (4grid data)
- usage of decision tree classification (4grid data)
- usage of stump classification (gridMulti data)
- usage of decision tree classification (gridMulti data)
Description of demo_multiclass_decisions.m
Shows the performance of stump and decision trees on a variety of different datasets
clear all close all generateData_binary
usage of stump classification (binary data)
options_st = []; model_st = ml_multiclass_stump(Xtrain, ytrain, options_st); yhat_st = model_st.predict(model_st, Xtest); testError_st = mean(yhat_st ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_st.name, testError_st);
Averaged misclassification test error with Stump Classification is: 0.067
usage of decision tree classification (binary data)
options_dt = []; model_dt = ml_multiclass_decisionTree(Xtrain, ytrain, options_dt); yhat_dt = model_dt.predict(model_dt, Xtest); testError_dt = mean(yhat_dt ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_dt.name, testError_dt);
Averaged misclassification test error with Decision Tree is: 0.093
figure; plotClassifier(Xtrain, ytrain, model_st); figure; plotClassifier(Xtrain, ytrain, model_dt); generateData_4grid


usage of stump classification (4grid data)
options_st = []; model_st = ml_multiclass_stump(Xtrain, ytrain, options_st); yhat_st = model_st.predict(model_st, Xtest); testError_st = mean(yhat_st ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_st.name, testError_st);
Averaged misclassification test error with Stump Classification is: 0.538
usage of decision tree classification (4grid data)
options_dt = []; model_dt = ml_multiclass_decisionTree(Xtrain, ytrain, options_dt); yhat_dt = model_dt.predict(model_dt, Xtest); testError_dt = mean(yhat_dt ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_dt.name, testError_dt);
Averaged misclassification test error with Decision Tree is: 0.333
figure; plotClassifier(Xtrain, ytrain, model_st); figure; plotClassifier(Xtrain, ytrain, model_dt); generateData_gridMulti


usage of stump classification (gridMulti data)
options_st = []; model_st = ml_multiclass_stump(Xtrain, ytrain, options_st); yhat_st = model_st.predict(model_st, Xtest); testError_st = mean(yhat_st ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_st.name, testError_st);
Averaged misclassification test error with Stump Classification is: 0.596
usage of decision tree classification (gridMulti data)
options_dt = []; model_dt = ml_multiclass_decisionTree(Xtrain, ytrain, options_dt); yhat_dt = model_dt.predict(model_dt, Xtest); testError_dt = mean(yhat_dt ~= ytest); fprintf('Averaged misclassification test error with %s is: %.3f\n', ... model_dt.name, testError_dt);
Averaged misclassification test error with Decision Tree is: 0.373
figure; plotClassifier(Xtrain, ytrain, model_st); figure; plotClassifier(Xtrain, ytrain, model_dt);

