Contents
Description of demo_multilabel_logistics.m
Demonstrates use of independent logistic regression classifiers for each candidate class for multilabel classification
clear all close all generateData_multiLabel
usage of independent logistic regression
options = struct('nLabels',nLabels); model = ml_multilabel_independent(Xtrain,ytrain,options); yhatTest = model.predict(model, Xtest); yhatTrain = model.predict(model, Xtrain); testError = sum(ytest~=yhatTest)/length(ytest); model.trainError = sum(ytrain~=yhatTrain)/length(ytrain); fprintf('Averaged misclassification test error with %s is: %.3f\n',... model.name, testError); linear_makeOneContourPlot(Xtrain,ytrain, model)
Averaged misclassification test error with Independent Logistic Classifiers is: 0.010

usage of independent logistic regression with L2-regularization
options = struct('nLabels',nLabels,'lambdaL2',1e-4); model = ml_multilabel_independent(Xtrain,ytrain,options); yhatTest = model.predict(model, Xtest); yhatTrain = model.predict(model, Xtrain); testError = sum(ytest~=yhatTest)/length(ytest); model.trainError = sum(ytrain~=yhatTrain)/length(ytrain); fprintf('Averaged misclassification test error with %s is: %.3f\n',... model.name, testError); linear_makeOneContourPlot(Xtrain,ytrain, model)
Averaged misclassification test error with Independent Logistic Classifiers is: 0.020
