Contents
Description demo_unsupervised_ISOMAP.m
Demonstrates use of ISOMAP to visualize a dataset in lower dimensions
clear all close all load animals.mat [n,d] = size(X);
usage of KPCA with rbf basis
Reduce to 2-dimensions with KPCA
kernelArgs = struct('sigma',10); options = struct('maxComponents',2,'kernelFunc',@ml_kernel_rbf,... 'kernelArgs',kernelArgs); model = ml_unsupervised_dimRedKPCA(X,options); Xreduced = model.reduceFunc(model,X); plot(Xreduced(:,1),Xreduced(:,2),'.'); grid on grid minor title('KPCA Projection onto 2-dimensions of animals data (rbf kernel)'); gname(animals)
Number of Components selected: 2 Variance explained by basis: 0.22

usage ISOMAP to visualize animals dataset in low dimensions
options = []; options.K = 2; options.names = animals; options.disconnected = 1; ml_visualize_ISOMAP(X,options);
