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Abstract

In this paper, we introduce a model of a financial market as a multiagent repeated
game where the players are market makers. We formalize the concept of market
making and the parameters of the game. Our main contribution is a framework
that combines game theory and machine learning methods. This approach allows
us to consider markets on both a macro level, through game outcomes, and on a
micro level, through the optimization efforts of players. Using simple equilibrium
analysis, we show that our model explains situations where market outcomes are
inefficient or unsustainable. We further apply our model to simulate market makers
in the SP500 E-mini futures market and show that players learn to adapt their
quotes to different market conditions.

1 Introduction

As the name suggests, the role of a market maker is to create a market for a financial asset i. A
market maker accomplishes this by simultaneously providing buy and sell prices of i continuously
throughout a trading day. In return for her readiness to transact i, a market maker hopes to profit from
the difference between the price she sells and buys i.

A financial market is generally supported by multiple market makers. This lends itself to a multiagent
game where players simultaneously maximize their own objectives, and where the payoff for each
player is determined both by her own actions and those of other players. We model this using a
repeated, coupled forward-reverse auction framework where the players are market makers.

Market making has been studied in both single agent settings ([8, 4]) and in multiagent setting
([3, 9]). Existing research uses (deep) reinforcement learning to study specific financial assets such as
agent-dealer markets [3], Bitcoin [9] and corporate bonds [4]. The goal is usually to derive a strategy
that predict future prices.

In contrast, our primary focus is to understand how the environment shapes the behaviour of market
makers and, in turn, market dynamics and outcomes. The main contribution of this paper is to develop
a model of financial markets that use game theory as a foundation for machine learning methods. This
approach allows us to consider markets on a micro level, for example, by using players that employ
online optimization or reinforcement learning strategies, and to analyze outcomes on a macro level
using concepts of equilibria and welfare. To the best of our knowledge, combining game theory and
optimization for financial policy design is a novel approach within the context of machine learning.

This paper begins by defining the model and measures of efficiency and sustainability. In Section
3, we use equilibrium analyses to show conditions under which markets may become inefficient or
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Figure 1: Repeated auction framework.

unsustainable. In Section 4, we provide experimental results using financial data to simulate players
running a no-regret strategy in a bandit environment. Mechanism design is a natural application of
our model and we discuss this in the context of future directions in Section 5.

2 Model definition

2.1 Framework

We propose a model of a market, in the form of a live order book, for a single financial asset i. This
process is summarized in Figure 1. The model is a multiagent, repeated game of finite length where,
at each time period t ∈ {1, . . . , T}, a forward and a reverse auction occurs simultaneously. Let the
set of players be N = {1, . . . , N}. The players represent the market makers and the auctioneer
represents the demand to acquire and to dispose of i.

At every time period t, player j decides on an action ajt ∈ R that determines her quote xjt . The
quote consists of a bid to buy i in the forward auction and an offer to sell i in the reverse auction.
The combined quotes from all players feed into an allocation rule that matches the auctioneer’s
objectives to buy and sell i with the players’ quotes. Each player receives her allocations. Netted
fills, or offsetting buy and sell fills, contribute to her market making rewards and the remainder enters
into her inventory. For example, if player j bids a quantity of five and offers a quantity of two, and if
she is allocated three buys and two sells, her netted fills of two buys and two sells contribute to her
market-making profit and the remainder of three buys enter into her inventory. Finally, each player
updates her strategy for the next time period.

2.2 Environment

The fair value of asset i at every time step t, denoted Vt, is assumed to be given. At time t, the
auctioneer’s objectives for i are represented by four variables: the quantity it wants to buy and sell,
QBt and QSt, and the maximum and minimum price it is willing to pay to transact PBt and PSt.
We use the term willingness to pay to mean the amount in excess of fair value of the auctioneer’s
prices, i.e. PBt − Vt and Vt − PSt.

The environment of the game is one of partial information. At time t, every player knows Vt′ for
t′ = 1, . . . , t but not the auctioneer’s objective (QBt′ , QSt′ , PBt′ , PSt′) for any t′. In addition, a
player’s action set, her inventory levels, her maximum trading size and the maximum amount of
inventory she could carry is known only to her. The production cost for every player, however, is
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known to all players and is assumed to be zero. At the conclusion of the auction, player j knows
her own allocations, bjt and sjt , and the list of aggregated trades Lt. Suppose the auctions at time t
results in trades occurring at dt distinct prices. Then the list of market trades consist of dt tuples
Lt =

{
[Lsize

t,1 , Lprice
t,1 ], . . . , [Lsize

t,dt
, Lprice

t,dt
]
}

where Lsize ∈ Z+ and Lprice ∈ R+.

2.3 Players

A player is governed by two parameters, her maximum inventory level kjmax and her maximum
trading size qj . Her action set, denoted Aj , is finite and fixed. She starts with zero inventory and,
at every iteration t of the repeated game, she holds some amount of i in inventory, denoted kjt ∈ Z.
She selects an action ajt ∈ Aj and submits a simultaneous order to buy and to sell xjt based on her
choice ajt . We refer to xjt (a

j
t ) as her quote for i. In essence, a player submits quantities that ensure

that |kjt+1| is at most kjmax and that her expected profit per trade, her edge, is ajt . Formally

xjt (a
j
t ) = (qbjt , qs

j
t , pb

j
t , ps

j
t ) (1)

where qbjt = min{qj , kjmax − k
j
t }, qs

j
t = min{qj , kjmax + kjt }, pb

j
t = Vt − ajt and psjt = Vt + ajt .

A player quotes tight when ajt is chosen to be small and quotes wide when ajt is large.

The simultaneous decisions of all N players form the strategy profile at = [ajt ]j∈N . The auctioneer
determines the outcome of the auction based on an allocation rule that takes xt(at) as an input.

After the auction, player j buys bjt and sells sjt units of i. We refer to bjt and sjt as her fills at time t.
She then updates her rewards, inventory and strategy. The reward at time t consist of two quantities.
Her market-making profit from netted fills, i.e. offsetting bjt and sjt , which is always positive

Jqjt (xt(at)) = min{bjt , s
j
t} · (ps

j
t − pb

j
t ) (2)

The change in the value of her inventory which could be positive or negative

Jpjt (xt(at)) =


(
Vt − pb

j

t

)
· kjt−1, kjt−1 ≥ 0(

psjt − Vt
)
· kjt−1, kjt−1 < 0

(3)

where pb
j

t and psjt represent the weighted average cost of acquiring inventory. For example, if player
j adds 1 unit at price 100 to her inventory at t = 1 and 2 units at price 99 at t = 2, pb

j

2 = 991/3.

Above, (3) makes the simplifying assumption that inventory value is “marked to mid-market”. In
other words, were player j to liquidate her inventory at time t, she could do so at fair value Vt. Her
per unit profit or loss would be given by the difference between her disposal price Vt and the average
price, p̄bj or p̄sj , of acquiring her inventory. Player j’s reward at time t is therefore the sum of (2)
and (3)

Jj
t (xt(at)) = Jqjt (xt(at)) + Jpjt (xt(at)) (4)

Fills that are not netted enter into player j’s inventory with the update kjt = kjt−1 + bjt − s
j
t .

As future values of Vt are unknown, inventory size |kjt | represents risk to future rewards (through (3))
as well as risk to a player’s future ability to quote (through (1)). Informally, balancing inventory size
and immediate profits from netted trades is the risk-reward tradeoff facing a player.

We model player j’s objective as minimizing regret Rj(t) = mina∈Aj

∑t
t′=1 J

j(x−jt′ , x
j(a)) -∑t

t′=1 J
j(x−jt′ , x

j
t′(a

j
t′)) where x−j denote the quotes of all players except player j. A player could

run a no-regret strategy with weights W j that represent a mixed strategy over her action set Aj .

2.4 Allocation policy

Our allocation policy follows financial industry standards of best execution which intuitively means
that the policy tries to execute as many units of i as possible for as low a cost to the auctioneer as
possible, up to the auctioneer’s willingness to pay. Ties are broken through pro-rata allocation. This
policy is summarized in algorithms 1 and 2.
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Algorithm 1: Forward auction allocation at t

Input: qbj and pbj for j ∈ N , PS, QS
Aggregate qbj into unique prices p1, . . . , pd
Sort pairs (pi, qi) by decreasing price
Initialize QR = QS; i = 1
while i ≤ d, pi ≥ PS and QR > 0 do

if QR ≥ qi then
bj = qbj for all j, pbj = pi

else
bj = pro-rata(qbj) for all j, pbj = pi

QR = QR−min{qi, QR}; i = i+ 1

Algorithm 2: Reverse auction allocation at t

Input: qsj and psj for j ∈ N , PB, QB
Aggregate qsj by unique prices p1, p2, . . .
Sort pairs (pi, qi) by increasing price
Initialize QR = QB; i = 1
while i ≤ d, pi ≤ PB and QR > 0 do

if QR ≥ qi then
sj = qsj for all j, psj = pi

else
sj = pro-rata(qsj) for all j, psj = pi

QR = QR−min{qi, QR}; i = i+ 1

2.5 Efficiency and Sustainability

An auctioneer’s objective is to maximize efficiency. This equates to minimizing the cost of buying
in the reverse auction and maximizing the gain from selling in the forward auction. In a repeated
game, we need to also consider efficiency in future time periods. From (4), we see that a player’s
reward is negative if Jpjt is negative and outweighs Jtjt . A rational player faced with a game where
expected rewards are negative would choose not to play. In real life, a market maker who loses too
much money may have no choice but to cease operations. If a large enough number of players exit
the game, future efficiency levels could be compromised. Therefore, both efficiency and sustaining
players are reasonable social objectives.

Motivated by the above discussion, we define three measures of efficiency. The percentage of the
auctioneer’s quantity executed during the game

E1 =

∑T
t=1

∑N
j=1

(
bjt + sjt

)
∑T

t=1 (QBt +QSt)
. (5)

The percentage of time where some trading occurred

E2 =
1

T
|{t ∈ {1, . . . , T} :

N∑
j=1

(bjt + sjt ) > 0}| (6)

The negative of the average price per unit of i executed above and below Vt

E3 = −
∑T

t=1

∑dt

s=1 |Vt − L
price
t,s | · Lsize

t,s∑T
t=1

∑dt

s=1 L
size
t,s

(7)

Efficiency is higher with high values of E1, E2 and E3.

We define sustainability S to equal the expected number of players with total rewards above some
minimum value ε.

S = E[|{j ∈ N :

T∑
t=1

Jj
t (xt) ≥ ε}|] (8)

Sustainability could mean that S remains above some number required for markets to function
effectively. In general, a higher value of S corresponds to higher levels of sustainability.

3 Equilibrium analysis

We illustrate a player’s risk-reward tradeoff when faced with different market environments and relate
this tradeoff to the welfare goals of sustainability and efficiency. We use a simplified version of
our game that consists of only a single time period and two players, each with only a choice of two
actions, operating in a full information environment.

We vary the circumstances that players face solely through changing the auctioneer’s objectives
(QB,QS, PB,PS). Our analysis demonstrate that
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1. Low auction quantities alone are not sufficient to incentivize players to quote competitively.

2. An auctioneer with low willingness to pay can induce players to quote competitively.

3. Unbalanced buy and sell auction quantities can induce players to quote competitively.

4. Some environments lead to games that resemble a prisoner’s dilemma game where the
equilibrium point is mutually disadvantageous to players. In some cases, this equates to
market makers choosing actions that lead to large negative rewards for all players.

3.1 Definitions

Denote the set of decisions of all N players by A = A1 × · · · ×AN ⊂ RN . The game is denoted by
Γ(N , A, {Jj}j∈N ). A strategy profile a ∈ A is a Nash equilibrium for Γ if and only if

Jj(x−j(a−j), xj(aj)) ≥ Jj(x−j(a−j), xj(ãj)) for all ãj ∈ Aj , j ∈ N (9)

A Nash equilibrium a is said to be admissible if there is no other Nash equilibrium a′ such that

Jj(x(ã)) ≥ Jj(x(a)) for all j ∈ N (10)

with at least one inequality strict [5].

Because there is only one time period in our equilibrium analysis, the inventory component of a
player’s reward (3) is always zero. Thus, for this section, we add a per unit inventory penalty kjp for
any unmatched fills. In other words, for our analysis below, we replace the reward function (4) by

Jj(x(a)) = Jqj(x(a)) + Jkj(x(a)) where Jkj(x(a)) = |bj − sj | · kjp (11)

3.2 Games

For simplicity, assume that the two players P1 and P2 are identical with action sets A1 = A2 =
{0.01, 0.02}, quote sizes q1 = q2 = 100 and inventory limits k1p = k2p = 0.04. Let the fair value
of i be V = 80.0 and ε = 0 in the measure of sustainability (8). We consider four games that have
outcomes with various degrees of efficiency and sustainability. Table 2 contains the reward matrices
of these games. Note that while the values in the reward matrices allow us to compare outcomes, the
absolute numbers themselves are not meaningful.

Game 1 We start with a game that is advantageous to the players. In our full information setting,
the auctioneer’s objectives are known to all. Thus, if the auctioneer has a high willingness to pay, i.e.
PB is much higher than V and PS much lower than V , and if it has sizeable quantity to execute, i.e.
QB and QS are large compared to

∑
j qs

j and
∑

j qb
j , players would prefer to quote wide.

For concreteness, let QB = 500, QS = 200, PB = 80.02, PS = 79.98. Using algorithms 1 and 2,
and the modified reward function (11), we calculate bj , sj and Jj for j ∈ {1, 2} as shown in table 1.
The Nash equilibrium a = (0.02, 0.02) corresponds to rewards (4.0, 4.0) and the welfare measures
(5)-(8) are E1 = 0.286, E2 = 1.0, E3 = −0.02 and S = 2. The outcome of this game shows that
when demand is price insensitive and large, market inefficiencies could occur and players could make
large profits.

Game 2 Now suppose that the auctioneer has the same willingness to pay as in game 1 but only has
a small quantity to execute. Let QB = 100, QS = 98, PB = 80.02, PS = 79.98. From the rewards
matrix, there are two Nash equilibria, a = (0.01, 0.01) and a′ = (0.02, 0.02), but only the latter is
admissible. The welfare measures (5) to (8) are E1 = 1.0, E2 = 1.0, E3 = −0.02 and S = 2.

The outcome of this game is slightly more efficient because the percentage of market demand fulfilled
is higher (reflected in E2). The per unit cost, however, remains high and the auctioneer still pays a
price that is V ± 0.02. Thus, we conclude that lower values of QB and QS may be insufficient to
incentivize players to quote tight.

Games 3 Compared to game 1, the auctioneer’s buy and sell quantities remain high but its
willingness to pay is low. Let QB = 500, QS = 200, PB = 80.01, PS = 79.99. The
only Nash equilibrium is a = (0.01, 0.01) with value (2.0, 2.0) and welfare measures are

5



B Player 1 Player 2

(0.01, 0.01) b1 = 100, s1 = 100, J1 = 2.00 b2 = 100, s2 = 100, J2 = 2.00
(0.01, 0.02) b1 = 100, s1 = 100, J1 = 2.00 b2 = 100, s2 = 100, J2 = 4.00
(0.02, 0.01) b1 = 100, s1 = 100, J1 = 4.00 b2 = 100, s2 = 100, J2 = 2.00
(0.02, 0.02) b1 = 100, s1 = 100, J1 = 4.00 b2 = 100, s2 = 100, J2 = 4.00

Table 1: Game 1 rewards calculation.

P2

0.01 0.02

P1
0.01 (2.00, 2.00) (2.00, 4.00)
0.02 (4.00, 2.00) (4.00, 4.00)

P2

0.01 0.02

P1
0.01 (0.94, 0.94) (1.88, 0.00)
0.02 (0.00, 1.88) (1.92, 1.92)

Game 1 Game 2

P2

0.01 0.02

P1
0.01 (2.00, 2.00) (2.00, 0.00)
0.02 (0.00, 2.00) (0.00, 0.00)

P2

0.01 0.02

P1
0.01 (-1.06, -1.06) (1.88, -4.0)
0.02 (-4.0, 1.88) (-0.08, -0.08)

Game 3 Game 4

Table 2: Payoff matrices for games 1 to 4.

E1 = 0.286, E2 = 1.0, E3 = −0.01 and S = 2. Compared to game 1, the auctioneer’s un-
willingness to pay is sufficient for the equilibrium point to shift to a more efficient point. In addition,
large values of PB and QB mean that players do not hold inventory and are profitable. Game 3 is an
example of an outcome that is both sustainable and efficient.

Game 4 Compared to game 2, the auctioneer’s willingness to pay remains high but it now wants
to buy an additional 100 units of i. This creates an imbalance between QB and QS. Let QB =
200, QS = 98, PB = 80.02, PS = 79.98. The equilibrium is a = (0.01, 0.01) with value (-1.06,
-1.06). The outcome of this game achieves higher efficiency with E1 = 1.0, E2 = 1.0, E3 = −0.01
and S = 2. Both players, however, suffered a loss. Thus, S = 0 which makes this game unsustainable.

It is interesting to note that this game resembles a prisoner’s dilemma game. The point a =
(0.02, 0.02), which could be interpreted as acting cooperatively, is not a Nash equilibrium. Player 1
is incentivize to undercut the Player 2’s quote for a reward of 1.88. By the same logic, Player 2 is
also incentivized to quote tight. Cooperation, however, would have resulted in both players achieving
a better reward.

We could ask when such an imbalance would likely occur in real markets. One extreme example is
a ‘market meltdown’ where economic uncertainty, or panic, results in a situation where there are
only sellers. This is a high risk scenarios for a typical market maker because inventory accumulates
quickly and its value also changes quickly. Intuitively, the player should charge more by choosing to
quote wide. Game 4, however, suggests that competition between players may not allow her to do so.

4 Experiments

We build on our equilibrium analysis by expanding the game to more players, actions and time
periods. We accomplish this through simulating a bandit environment where players employ a
no-regret strategy to learn an optimal action. Corresponding to a ‘bankruptcy’ situation, we require a
player to exit the game when her cumulative rewards fall below a predetermined, negative-valued
threshold. The goal remains to examine the relationship between efficiency and sustainability.

Our main conclusions are:
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1. When the auctioneer’s willingness to pay is low, players learn to quote tighter and player
rewards decrease.

2. For every unit of increase in the auctioneer’s willingness to pay, players increase their quote
width by only a percentage of that value. This means that the actual price paid by the
auctioneer is generally smaller than its willingness to pay.

3. When markets are volatile, fewer players survive and those remaining learn to quote wider.

4. A form of unplanned coordination may arise where players ‘share’ fills across time periods.

4.1 Simulation settings and data

Simulation uses historical price data of SP500 E-mini futures, denoted ES, traded on the Chicago
Mercantile Exchange’s Globex trading platform. We chose the asset ES because there are many
participants in its market and it produces large amounts of financial data.

The data we use is a time series of two types of market events: trades in ES and updates to the best
quote of ES. Trades are recorded as a trade price and a trade quantity. Quote updates are recorded as
a bid price, an offer price, a bid quantity and an offer quantity. A data point is recorded when either
of the event occurs except when updates occur within 250 milliseconds. In those cases, updates are
aggregated.

We use data to set the fair value Vt and the auctioneer’s quantities QBt and QSt. We do not, however,
use data to set PBt and PSt. Theoretically, PBt and PSt represent what the auctioneer would
have liked to trade. Historical volume data reflects what was actually traded and thus corresponds
more to the sum of market maker fills. Instead, we treat PBt and PSt as a parameter to control the
auctioneer’s willingness to pay.

The game runs across two separate time periods: the month of March 2020 and the month of July
2020. Data from March coincides with a sell-off caused by the start of a pandemic, and data from
July reflects a relatively quiet summer period. For every level of willingness to pay, we run five
games of weekly duration in both time periods and average their results. We limit ourselves to data
generated during ‘normal’ market hours between 9:30 and 16:00 ET and aggregate data into one
minute intervals. Thus, each weekly game occurs over T = 1950 time periods.

The game consists of N = 10 identical players. Every player j has 12 actions in their action set
Aj = {0.25, 0.50, 0.75, . . . , 3.0}, quote size qj = 1000 and inventory limit kjmax = 5000. All
players start with zero reward and inventory. If, at any point in the game, the total reward of player j
falls below -50,000, she is forced to liquidate her inventory and exit the game.

All players employ the EXP3 algorithm (Auer et al., 2002) with a learning rate η =
√

log |Aj |/T
to optimize their mixed strategy. We chose the EXP3 algorithm because it has been shown to be
a no-regret strategy [1]. We use (2) as a player’s objective. This satisfies the assumption in EXP3
that rewards lie within [0,1]. Inventory considerations do not affect the objective in this game. But
because (2) is always positive, the event of ‘bankruptcy’ is purely driven by changes in inventory
value.

4.2 Simulation results

Figure 2 summarizes our results. The charts show the effect of the auctioneer’s willingness to pay, in
the x-axes of both charts, and of market volatility, corresponding to using March versus July data,
across various measures of efficiency and sustainability.

The red lines labelled action on the left chart show the strategies learned by the players by the end
of the game. action is the expected value of a player’s action at T , 〈W j

T , A
j〉, averaged across all

surviving players. The results show that, regardless of willingness to pay, players generally quote
wider in a volatile period than in a quiet period. Holding market volatility constant, players learn to
quote wider as the willingness to pay increases.

The blue lines labelled txnCost on the left chart correspond to the average price that the auctioneer
paid above or below fair value to trade. By definition, txnCost is smaller than willingness to
pay. Less intuitively, the results also show that when willingness to pay is high, txnCost can be
significantly below both willingness to pay and action. The latter effect suggests that with enough
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Figure 2: Simulation results varying willingness to pay and market volatility. The left chart plots
measures of efficiency. The right chart plots measures of sustainability.

players playing a mixed strategy on their quote width, players end up taking turns quoting tight and
‘share’ fills across time periods. One interpretation of this is that a level of unplanned cooperation
between players emerged by the end of the game.

The green lines labelled txnPct represent the percentage of time where some trading occur. Un-
surprisingly, txnPct increases with increasing willingness to pay. The results also suggest that this
effect is independent of market volatility.

On the right-hand side chart, the red lines labelled nSurvivors plot the number of players (out of
10) left in the game at time T . Games in March have fewer survivors than in July. Surprisingly,
nSurvivors seems independent of willingness to pay.

Finally, the blue lines on the right chart labelled rewards plot the average cumulative reward of
surviving players at time T . This value increases with higher values of willingness to pay and the
absolute level of rewards is higher in the higher volatility environment. The primary reason for
this is that trading volumes are also higher in March than in July. The loss of any non-survivor is
roughly equal to the bankruptcy threshold of -50,000. This is much smaller than the average reward
of surviving players and suggests that survivorship bias does not play a significant role.

5 Discussion and future direction

Our paper introduces a model of financial markets by casting market makers as players and non-
market makers collectively as the auctioneer in a repeated game. We apply our model to examine
the relationship between market efficiency and sustainability. Our equilibrium analysis suggests that
outcomes depend on buy-sell imbalances in market demand and on the market’s willingness to pay.
Our simulation results expand on relationships between willingness to pay, market volatility, players’
learned quote spreads, survivability and the cost to transact. The results also suggest that some level
of cooperation could emerge without players explicitly seeking to cooperate.

Improvements could come from using more realistic models. For example, we could substitute
reinforcement learning for online learning [2], change the allocation policy from pro-rata tie breaks
to price-time allocations, or allow players to quote asymmetrically based on inventory levels.

The equilibrium analysis of game 4 shows that players could wind up in a version of prisoner’s
dilemma. A natural extension is to combine welfare measures (5)-(8) into a single objective and to
consider solutions in terms of the price of anarchy or the price of stability [10]. This would bring us
closer to mechanism design.

Our simulation suggests that there is value in allowing players to enter and exit the game. Existing
literature on games with dynamic populations [7] may provide theoretical insights to our simulation.

Finally, a drawback in our analysis comes from either assuming a full information environment or
a full bandit environment. Neither assumptions are realistic. Market makers, through experience,
make informed guesses on the circumstances of other market makers and on market conditions. An
improvement would be to move to a partial bandit environment [6].
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