-3
T
University of
British Columbia
Geometric
Transformations
* recap
* composition of transformations
* rendering pipeline overview
F 3
Transformations recap unversiy of
British Columbia
Affine transformations
> linear transformation + translations
> can be expressed as a 3x3 matrix + 3 vector
x=M-x+t
Homogeneous coordinates
> Unified representation as 4-vector (in 3D) for
— Points
— Vectors / directions
» Affine transformations become 4x4 matrices
— Composing multiple affine transformations
involves simply multiplying the matrices
_I!
Geometrically In 2D Universiyof
British Columbia
Cartesian Coordinates:

il

News University of
British Columbia

°

newsgroup is working

labs start today, CICSR 011

— waitlisted: pick a lab, attend to hear TA talk

— accounts: newsgroup answer on activate/reenable
> readings

— Chap 1: graphics overview

— Chap 2: graphics programming

— Chap 4: transformations

°

il

University of

Homogeneous coord I nates British Columbia

Homogeneous representation of points:
» Add an additional component w=1 to all points

- All multiples of this vector are considered to represent
the same 3D point

> why bother? need unified representation

X X-w
% y
y|= Y = v Vw#0
Z W
Z
1 w
r1
Geometrically In 2D e
British Columbia
Homogeneous Coordinates:

Xow,

w yVew

w

il

Homogeneous Matrices universty of

British Columbia

Affine Transformations

X' my om, om0 x r,
y' |y s o, 0|y . t
z' my, My, My, 0]z t,
][O0 0 0 1][1] [0
ml,l m, M, O _x_ _0 00 t, X
_ my, my, ny,; 0 1y + 000 t, 1y
my, my, my; 0]z 000 ||z
L 0 0 0 1J[1] |0 00 O][1
-3
Homogeneous Matrices e
British Columbia

Note:

> Multiplication of the matrix with a constant does not
change the transformation!

X my ko om,k omack 1ok | x x"k
7 Y|z my, -k my, -k omy,ck otk 1Y) vk
z my, -k omy, ko omyyokotook||z 7'k
1 | O 0 0 k 1 k
[x' X
A S
Tl e normalize: divide by w
1 1

-3

Homogeneous Vectors w3

British Columbia
Representing vectors/directions in
homogeneous coordinates

> Need representation that is only affected by linear
transformations, but not by translations

> Answer: w=0

5% my o om, omyy to| X X'
T Y| “oa Hap g L1y _ Y
< My, My, My 1|2 g
0 0 0 0 1 0 0

© Tamara Munzner

ri
Homogeneous Matrices o
British Columbia
Combining the two matrices into one:
N [m, m, m, 0][x] [0 0 0 ¢7[=x
y':mz.l My, Mys 0.y+0 00 Ll |y
2| |my my, myy; 0|z |0 0 0 ¢ ||z
L) [0 0 0 1|1 000 O0]|1L
_ml,l m, M o)X
_||Hap Ulpp g L1y
rn},l rn3,2 m3,3 t: z
Lo o o 1|1
ri
Homogeneous Vectors University of
British Columbia

point: w >= 1
» What about vectors (directions)?
> What is the affine transformation of a vector?
— Rotation
— Scaling
— Translation

Vectors are invariant under translation!

© Tamara Munzner

ri
i
Transformations unversty ot
British Columbia
translate(a,b,c) scale(a,b,c)
x' 1 allx] X' a Tx
Y 1 by Y _ b y
z' 1 cfz z c z
1 11 1 11
Rotate(x,6) Rotate (y,8) Rotate (z,0)
x| [x| [cos@ sing | [cos® -—sin
Y cos@ —sinf y 1 sin@ cos 6
2| sin@ cos@ z —sin @ cos 6 1
1 1 1] 1] 1

© Tamara Munzner

r

Transformations uf.ﬁ,.

British Columbia

Arriving at a transformation...

Transformations

Arriving at a transformation...

[

~{l
e
ul

=2
University of
British Columbia
Rotate(z,90)
x' cos@ —sinf x
Y| _|sin@ cosé y
2| 1 z
1 1)1

R

-
F|’ s
T
Je 0]
object defined in |E
local coords
place object in world
F 3
Transformations u".min, .
British Columbia
How about the following?
X 1 x
y|_[0 y
z 1 z
1 11
j\ L shear
Ol
F 3
Composing Transformations u".mim.
British Columbia
scaling
sx1= dx2
S2.S1 — RARER)) .
1 so scales multiply
1
rotation
cos(01+62) —sin(61+62)
sin(@1+62) cos(61+62)
R2eRl= .
1 so rotations add

© Tamara Munzner

il

Composing Transformations _unwesiyor

translation

1 dxi
1 dy

T1=T (dxi,dy) = "

- a8 S 9

British Columbia

1 dx2
1 dy:

T2 =T (dx2,dy2) = |

- o o 8

P"'=T2eP'=T2e[T1e P|=[T2eT1]e P,where

1 dxivdx2 a
1 dyi+dy> b

1 c

1

T2eT1=

so translations add

© Tamara Munzner

il

Composing Transformations _unwesiyor

British Columbia

ORDER MATTERS!

L L

R(45)T(1.1)

R(45)

T(1,1)R(45) @

TaTb =Tb Ta, but Ra Rb != Rb Raand Ta Rb !=Rb Ta

© Tamara Munzner

r

Composing Transformations uf.ﬁ,.

British Columbia

suppose we want Rotate(z,-90) Translate(2,3,0)
F.|l J
il *
~ 4
I Ful L Fu |7

Fwl F, :

P, = Rot(z,-90) P, P, =Trans(2,3,0) P,
——

P, =Trans(2,3,0) Rot(z,-90) P,

© Tamara Munzner

4l

Composing Transformations e o

British Columbia
P, =Trans(2,3,0) Rot(z,-90) P,
Which direction to read?
> R-to-L: interpret operations wrt fixed coords [object]
> L-to-R: interpret operations wrt local coords [coord sys]
> OpenGL (L-to-R, local coords)
glTranslatef(2,3,0); M =M -Trans(2,3,0)
glRotatef(-90,0,0,1); M =M -Rot(z,-90)

updates current transformation matrix

-3

Composing Transformations u?;

British Columbia

Undoing Transformations: inverses

Trans(x, y,z)" = Trans(—x,—y,—z)
Trans(x,y,z) Trans(—x,—y,—z) = I

Rot(z,0)" = Rot(z,-0) =Rot"(z,6) (Ris orthogonal)

Rot(z,0) Rot(z,—6) = 1

Scale(sx, sy,sz)” = SCf/th‘f(i LN

S50 sx sy’ sz
-1
Composing of Linear %
Transformations universityof
British Columbia

In general:

> Transformation of geometry into coordinate system
where operation becomes simpler

> Perform operation

> Transform geometry back to original coordinate
system

Also works for affine transformations

© Tamara Munzner

by postmultiplying
r i
Rotation about a point e
British Columbia
rotate about translate P rotate about translate P
: to origin origin back
U(
JT/H(x,y) /i
i 4
J =) L. .
Fw !
Trans(x,y, z) Rot(z,0)Trans(—x,—y,—z)
r i
Composing of Affine ==
Transformations e

British Columbia

Example: Rotation around arbitrary center

Composing of Affine
Transformations

il

University of
British Columbia

Example: Rotation around arbitrary center
> Step 1: translate coordinate system to rotation center

Composing of Affine
Transformations

il

University of
British Columbia

Example: Rotation around arbitrary center
> Step 2: perform rotation

Composing of Affine —
Transformations eI

British Columbia

Example: Rotation around arbitrary center
> Step 3: back to original coordinate system

© Tamara Munzner

-3

University of
British Columbia

The Rendering Pipeline -
An Overview

© Woligang Heidrich

il

Rotation about an arbitrary axis uuwesyo

British Columbia
» axis defined by two points

> translate point to the origin

rotate to align axis with z-axis (or x ory)
> perform rotation

> undo aligning rotations

° undo translation

°

1
3D Graphics e,
Modeling:

> Representing object properties
— Geometry: polygons, smooth surfaces etc.
— Materials: reflection models etc.
Rendering:
> Generation of images from models
— Interactive rendering
— Ray-tracing
Animation:
» Making geometric models move and deform

il

Rendering iversy of

British Columbia

Goal:
> Transform computer models into images
> May or may not be photo-realistic
Interactive rendering:
> Fast, but until recently low quality
> Roughly follows a fixed patterns of operations

> Rendering Pipeline
Offline rendering:
> Ray-tracing
> Global illumination

© Tamara Munzner

-3

The Rendering Pipeline ummam.
British Columbia
What is it? All of this:

> Abstract model for sequence of operations to
transform a geometric model into a digital image

> An abstraction of the way graphics hardware works

> The underlying model for application programming
interfaces (APIs) that allow the programming of
graphics hardware

> OpenGL

» Direct 3D
Actual implementations of the rendering
pipeline will vary in the details

© Tamara Munzner

il

Rendering univershy of

British Columbia
Tasks that need to be performed (in no
particular order):
> Project all 3D geometry onto the image plane
> Geometric transformations

» Determine which primitives or parts of primitives are
visible

* Hidden surface removal

» Determine which pixels a geometric primitive covers
> Scan conversion

> Compute the color of every visible surface point
> Lighting, shading, texture mapping

© Tamara Munzner

The Rendering Pipeline %
Geometry Database syt

Geometry
Database

Geomeitry database:

> Application-specific data structure for holding
geometric information

> Depends on specific needs of application
— Independent triangles, connectivity information etc.

© Tamara Munzner

e
"
The Rendering Pipeline universiy of
British Columbia
Model/Vi Pel i -
Dotanete || Transform. | -| Uighting |—{SERRCC e [Clipping |
Cor?\f;";lon_’ axiugnol — l':)ree';tth — Blending I:::;:;—
e
The Rendering Pipeline -

Model/View Transformation Universiy of

British Columbia

Model/View
Transform.

Geometry
Database

Modeling transformation:

> Map all geometric objects from a local coordinate
system into a world coordinate system

Viewing transformation:

> Map all geometry from world coordinates into camera
coordinates

© Tamara Munzner

The Rendering Pipeline g
Lighting L

Geometry Model/View
Database Transform.

|

Lighting

Lighting:

» Compute the brightness of every point based on its
material properties (e.g. Lambertian diffuse) and the
light position(s)

> Computation is performed per-vertex

© Tamara Munzner

The Rendering Pipeline '_:=:

Perspective Transformation university of

British Columbia

Model/View Perspective

Geometry P
Transform. Lighting [~ 7 2hsform.

Database

|

Perspective transformation
> Projecting the geometry onto the image plane

> Projective transformations and model/view
transformations can all be expressed with 4x4 matrix

[
The Rendering Pipeline ==
Clipping L,
Sebosy || Transtorm, | - Uahting (-{FoREENE!S Clipping
Clipping

> Removal of parts of the geometry that fall outside the
visible screen or window region

> May require re-tessellation of geometry

© Tamara Munzner

The Rendering Pipeline ==
Scan Conversion et

British Columbia
Scan conversion

> Turning 2D drawing primitives (lines, polygons etc.)
into individual pixels (discretizing/sampling)

> Interpolation of colors across the geometric primitive

> This yields a fragment (pixel data associated with a
particular location in the final image and color values,
depth, and some additional information)

© Tamara Munzner

operations
T 1
The Rendering Pipeline ==
e
Scan Conversion univershy of
British Columbia
Model/Vi P i T
Databas || Transtorm, | < Lighting [~ TR 4 Clipping |
Scan
Conversion
T 1
The Rendering Pipeline ==
e
Texture Mapping e
Geometry Model/View Perspective

|
|
L

Database | | Transform. Lighting |~ ¢ - hsform. [| ClPPING | —

Scan

Conversion [| TeXturing

© Tamara Munzner

The Rendering Pipeline g
Texture Mapping Uyt

Texture mapping
> “gluing images onto geometry”

> The color of every fragment is altered by looking up a
new color value from an image

© Tamara Munzner

The Rendering Pipeline

r3

The Rendering Pipeline ==
Depth Test universityof
British Columbia
Deptih test:
> Removes parts of the geometry that are hidden
behind other geometry
> Test is performed on every individual fragment
— we will also discuss other approaches later
The Rendering Pipeline ==
Blending Universityof
British Columbia
Blending:

> Fragments are written to pixels in the final image

> Rather than simply replacing the previous color value,
the new and the old value can be combined with
some arithmetic operations (blending)

> The video memory on the graphics board that holds
the resulting image and is used to display it is called
the framebuffer

© Tamara Munzner

v
e
Depth Test Univa‘rslly of
British Columbia
Geometry Model/View P | | Perspective
Database Transform. || Lighting Transform. | | ClIPPINg | —
Scan L .| Depth
Conversion extiiing Test
© Tamara vunzner
r i
The Rendering Pipeline ==
L
Blending universiy of
British Columbia
Geometry Model/View Perspective]
Database Transform. || HOMING |\~ onctorm. Clipping | —
Scan . Depth
Conversion [| TeXturing |—| o |7 Blending
© Tamara Munzner
r i
—
L
The Rendering Pipeline universiy of
British Columbia
Geometry Model/View Perspective]
Database Transform. || HOMING |~ onetorm. Clipping | —
Scan q Depth Frame-
Conversion [| TeXturing |~ To [~ Blending buffer

© Tamara Munzner

Discussion

Advantages of a pipeline structure

°

> Only local knowledge of the scene is necessary

r

University of
British Columbia

Logical separation of the different components,
modularity

Easy to parallelize:

— Earlier stages can already work on new data while
later stages still work with previous data

— Similar to pipelining in modern CPUs

— But much more aggressive parallelization possible
(special purpose hardware!)

— Important for hardware implementations!

© Tamara Munzner

Discussion
Disadvantages:

o

°

o

4l

University of
British Columbia

Limited flexibility

Some algorithms would require different ordering of
pipeline stages

— Hard to achieve while still preserving compatibility
Only local knowledge of scene is available
— Shadows

— Global illumination

© Tamara Munzner

