
11

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 1

Viewing and Projections
Wed 17 Sep 2003

• project 1
• recap: display lists
• viewing
• projections

Week 3, Wed 17 Oct 03 © Tamara Munzner 2

News

• Project 1 out

• Trouble ticket into IT services re newsgroup
on news.interchange
– read on nnrp.cs in the meantime

Week 3, Wed 17 Oct 03 © Tamara Munzner 3

Project 1: Articulated Elephant

• modelling
– spheres and cubes
– hierarchical transformations
– think cartoon!

• animation
– more transformations
– tail wag, head/neck nod, leg raise, trunk curl
– gaps, self-intersections OK

Week 3, Wed 17 Oct 03 © Tamara Munzner 4

Elephants

http://www.worldwildlife.org/expeditions/images/elephant.jpghttp://www.worldwildlife.org/expeditions/images/elephant.jpg
http://www.wapers.com/animalnplant/elephant/elephant.jpghttp://www.wapers.com/animalnplant/elephant/elephant.jpg

http://aletsch.esis.ch/julen/picts/elephant.jpghttp://aletsch.esis.ch/julen/picts/elephant.jpg

Week 3, Wed 17 Oct 03 © Tamara Munzner 5

Elephant Rest Pose

Week 3, Wed 17 Oct 03 © Tamara Munzner 6

Elephant Structure

22

Week 3, Wed 17 Oct 03 © Tamara Munzner 7

Trunk Curled, Leg Raised

Week 3, Wed 17 Oct 03 © Tamara Munzner 8

Interaction

• key bindings as toggles
• on click, move from rest state to new position

or vice versa
• already in framework: 6 camera positions
• toggle between jumpcut and smooth transition

Week 3, Wed 17 Oct 03 © Tamara Munzner 9

Transition
• first: jump cut from old to new position

– all change happens in single frame

• do last: add smooth transition
– change happens gradually over 30 frames
– key click triggers animation loop

• explicitly redraw 30 times
• linear interpolation:

each time, param += (new-old)/30

– example: 5-frame transition

Week 3, Wed 17 Oct 03 © Tamara Munzner 10

Tail Wag Frame 0

Week 3, Wed 17 Oct 03 © Tamara Munzner 11

Tail Wag Frame 1

Week 3, Wed 17 Oct 03 © Tamara Munzner 12

Tail Wag Frame 2

33

Week 3, Wed 17 Oct 03 © Tamara Munzner 13

Tail Wag Frame 3

Week 3, Wed 17 Oct 03 © Tamara Munzner 14

Tail Wag Frame 4

Week 3, Wed 17 Oct 03 © Tamara Munzner 15

Tail Wag Frame 5

Week 3, Wed 17 Oct 03 © Tamara Munzner 16

Strategy
• check from all camera angles
• interleave modelling, animation

– add body part, then animate it
– discover if on wrong track sooner
– depenencies: can’t get anim credit if no model

• do smooth transitions last
• don’t start extra credit until required all done
• consider using different model, anim xforms

Week 3, Wed 17 Oct 03 © Tamara Munzner 17

Writeup
• README

– what’s implemented
– undone: for partial credit

• state problems
• describe how far you got
• conjecture possible solutions

– extra
• what you did
• how many points you argue it’s worth

Week 3, Wed 17 Oct 03 © Tamara Munzner 18

Grading
• Project 1: 10% of course grade
• use handin program before Thu 2 Oct 5pm
• face-to-face grading

– sign up for 10-minute slot, arrive 10 min early
– bring printouts: code, README

• must match handin

– demo from submission directory
– late if handin or file timestamps after deadline

• late policy: 3 grace days for term, then 20% per day

44

Week 3, Wed 17 Oct 03 © Tamara Munzner 19

Plagarism Policy
• no collaboration allowed

– your work alone
– general discussions of approach OK
– do not look at (or copy) anybody else’s code

• plagarism is detectable
– both by TAs and automated programs

Week 3, Wed 17 Oct 03 © Tamara Munzner 20

Hall of Fame
• best work posted on course web site
• previous years

– http://www.ugrad.cs.ubc.ca/~cs414/Vjan2003/best_projects
– http://www.ugrad.cs.ubc.ca/~cs414/best_of_2002/HW3_best.htm

Week 3, Wed 17 Oct 03 © Tamara Munzner 21

Display List recap
• reuse block of OpenGL code
• more efficient than immediate mode

– code reuse, driver optimization

• good for static objects redrawn often
– can’t change contents
– not just for multiple instances

• interactive graphics: objects redrawn every frame

Week 3, Wed 17 Oct 03 © Tamara Munzner 22

Display List recap
• example: 36 snowmen

– small display list with 36x reuse
• 3x faster

– big display list with 1x reuse
• 2x faster

– nested display lists, 1x * 36x reuse:
• 3x faster, high-level block available

Week 3, Wed 17 Oct 03 © Tamara Munzner 23

Double Buffering recap
• two framebuffers, front and back

– avoid flicker
– while front is on display, draw into back
– when drawing finished, swap the two

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 24

Viewing and Projections

55

Week 3, Wed 17 Oct 03 © Tamara Munzner 25

Viewing and Projection
• need to get from 3D world to 2D image
• projection: geometric abstraction

– what eyes or cameras do

• two pieces
– viewing transform:

• where is the camera, what is it pointing at?

– perspective transform: 3D -> 2D
• flatten to image

Week 3, Wed 17 Oct 03 © Tamara Munzner 26

From Geometry to Screen
• geometry in world coordinate system:

how to get to screen?
– transform to camera coordinate system
– transform to volume in viewing coordinates
– clip
– project to display coordinates
– rasterize

Week 3, Wed 17 Oct 03 © Tamara Munzner 27

Coordinate Systems
• result of a transformation
• names

– convenience
• elephant: neck, head, tail

– standard conventions in graphics pipeline
• object/modelling
• world
• camera/viewing
• screen/window
• raster/device

Week 3, Wed 17 Oct 03 © Tamara Munzner 28

Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

Week 3, Wed 17 Oct 03 © Tamara Munzner 29

Basic Viewing
• starting spot - OpenGL

– camera at world origin
• probably inside an object

– y axis is up
– looking down negative z axis

• why? RHS with x horizontal, y vertical

• translate backward so scene is visible
– move distance d = focal length

• what about flying around?

Week 3, Wed 17 Oct 03 © Tamara Munzner 30

Arbitrary Viewing Position
• rotate/translate/scale not intuitive
• convenient formulation

– eye point, gaze/lookat direction, up vector

66

Week 3, Wed 17 Oct 03 © Tamara Munzner 31

Viewing Transformation
• translate eye to origin
• rotate view vector (lookat – eye)

to z axis
• rotate around z to bring up into yz-plane

camM

Week 3, Wed 17 Oct 03 © Tamara Munzner 32

Viewing Transformation

OCSOCS WCSWCS VCSVCS
modelingmodeling

transformationtransformation
viewingviewing

transformationtransformation

modM camM
OpenGL ModelView matrix

object world viewing

Week 3, Wed 17 Oct 03 © Tamara Munzner 33

Viewing Transformation

• OpenGL
– gluLookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz)

but this postmultiplies the current matrix;
therefore usually use as follows:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz)
// now ok to do model transformations

University of British ColumbiaUniversity of British Columbia

CPSC 414 Computer GraphicsCPSC 414 Computer Graphics

© Tamara Munzner 34

Projections

Week 3, Wed 17 Oct 03 © Tamara Munzner 35

Projection
• theoretical pinhole camera

imageimage
planeplane

eyeeye
pointpoint

– image inverted, more convenient equivalent

imageimage
planeplane

eyeeye
pointpoint

Week 3, Wed 17 Oct 03 © Tamara Munzner 36

General Projection
image plane need not be perpendicular to
view plane

imageimage
planeplane

eyeeye
pointpoint

imageimage
planeplane

eyeeye
pointpoint

77

Week 3, Wed 17 Oct 03 © Tamara Munzner 37

Real Cameras

real pinhole camerareal pinhole camera
apertureaperture

ff

lenslens

cameracamera

price to pay: limited depth of fieldprice to pay: limited depth of field

Week 3, Wed 17 Oct 03 © Tamara Munzner 38

Projection Taxonomy

planarplanar
projectionsprojections

perspective:perspective:
1,2,31,2,3--pointpoint

parallelparallel

obliqueoblique orthographicorthographic

cabinetcabinet cavaliercavalier top,top,
front,front,
sideside

axonometric:axonometric:
isometricisometric
dimetricdimetric
trimetrictrimetric

Week 3, Wed 17 Oct 03 © Tamara Munzner 39

Projection Comparison

• Obliques
– Cavalier
– Cabinet

• Axonometrics
– Isometrics
– Others

• Perspectives

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
Week 3, Wed 17 Oct 03 © Tamara Munzner 40

Oblique Projections

xx

yy

zz

α

cavaliercavalier

dd
dd

xx

yy

zz

α

cabinetcabinet

dd

d/2d/2

• both have true front view
– cavalier: distance true
– cabinet: distance half

Week 3, Wed 17 Oct 03 © Tamara Munzner 41

Axonometric Projections

http://ceprofs.tamu.edu/tkramer/ENGR%20111/5.1/20
Week 3, Wed 17 Oct 03 © Tamara Munzner 42

Perspective Projections

oneone--pointpoint
perspectiveperspective

twotwo--pointpoint
perspectiveperspective threethree--pointpoint

perspectiveperspective

• classified by vanishing points

88

Week 3, Wed 17 Oct 03 © Tamara Munzner 43

Projective Transformations
• planar geometric projections
– planar: onto a plane
– geometric: using straight lines
– projections: 3D -> 2D

• aka projective mappings

• counterexamples?

Week 3, Wed 17 Oct 03 © Tamara Munzner 44

Projective Transformations
• properties
– lines mapped to lines and triangles to triangles
– parallel lines do NOT remain parallel

• e.g. rails vanishing at infinity

– affine combinations are NOT preserved
• e.g. center of a line does not map to center of

projected line (perspective foreshortening)

Week 3, Wed 17 Oct 03 © Tamara Munzner 45

Perspective Projection
• project all geometry
through a common center of projection (eye point)
onto an image plane

xxzz xxzz

yy

xx

--zz

Week 3, Wed 17 Oct 03 © Tamara Munzner 46

Projection

mappingmapping nmf mn <ℜ→ℜ ,:

II
orthographicorthographic obliqueoblique

center of projection

II

II

definition

parallel : center of projection atparallel : center of projection at

perspectiveperspective

��

Week 3, Wed 17 Oct 03 © Tamara Munzner 47

Projective Transformations
• transformation of space
– center of projection moves to infinity
– viewing frustum transformed into a parallelpiped

--zz

xx

--zz

xx

FrustumFrustum

Week 3, Wed 17 Oct 03 © Tamara Munzner 48

View Volume
• convention
– viewing frustum mapped to specific parallelpiped

• Normalized Device Coordinates (NDC)

– only objects inside the parallelpiped get rendered
– which parallelpied? depends on rendering system

• OpenGL
– left/right image boundaries mapped to x = +/- 1
– top/bottom mapped to y = +/- 1
– near/far plane mapped to z = 0, z = 1

99

Week 3, Wed 17 Oct 03 © Tamara Munzner 49

Projective Transformations
• OpenGL convention

--zz

xx

FrustumFrustum

z=z=--nn z=z=--ff

rightright

leftleft --zz

xx

x=x=--11 z=1z=1

x=1x=1

Camera coordinatesCamera coordinates NDCNDC

Week 3, Wed 17 Oct 03 © Tamara Munzner 50

Projective Transformations
• why near and far plane?
– near plane:

• avoid singularity (division by zero, or very small
numbers)

– far plane:
• store depth in fixed-point representation (integer), thus

have to have fixed range of values (0…1)
• avoid/reduce numerical precision artifacts for distant

objects

Week 3, Wed 17 Oct 03 © Tamara Munzner 51

Asymmetric Frusta
• our formulation allows asymmetry
– why bother?

--zz

xx

FrustumFrustum
rightright

leftleft

Week 3, Wed 17 Oct 03 © Tamara Munzner 52

Simpler Formulation
• look through window center

– symmetric frustum

• left, right, bottom, top, near, far
– overkill
– nonintuitive

• constraints
left = -right, bottom = -top

Week 3, Wed 17 Oct 03 © Tamara Munzner 53

Field-of-View Formulation
• FOV in one direction + aspect ratio (w/h)
– determines FOV in other direction
– also set near, far (reasonably intuitive)

--zz

xx

FrustumFrustum

z=z=--nn z=z=--ff

αααααααα
fovx/2fovx/2

fovy/2fovy/2
hh

ww

Week 3, Wed 17 Oct 03 © Tamara Munzner 54

Basic Projection

similar triangles:similar triangles:
z
y

d
y ='

z
dy

y
⋅='

zz

P(x,y,z)P(x,y,z)

P(x’,y’,d)P(x’,y’,d)

z=dz=d

yy

similarlysimilarly
z
dx

x
⋅='

1010

Week 3, Wed 17 Oct 03 © Tamara Munzner 55

Basic Projection
• using w and 4x4 matrices

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

1/1
1

1

1

/
z
y

x

ddz
z
y

x

�
�
�

�

�

�
�
�

�

�

⋅
⋅

d

zdy

zdx

/

/

�
�
�
�

�

�

�
�
�
�

�

�

dz
z
y

x

/

w/

Week 3, Wed 17 Oct 03 © Tamara Munzner 56

Projective Transformations
• can express as homogeneous 4x4 matrices!
• 16 matrix entries
– multiples of the same matrix all describe the same

transformation
– 15 degrees of freedom
– mapping of 5 points uniquely determines

transformation

Week 3, Wed 17 Oct 03 © Tamara Munzner 57

Projective Transformations
• determining the matrix representation
– need to observe 5 points in general position, e.g.

• [left,0,0,1]T→[1,0,0,1]T

• [0,top,0,1]T→[0,1,0,1]T

• [0,0,-f,1]T→[0,0,1,1]T

• [0,0,-n,1]T→[0,0,0,1]T

• [left*f/n,top*f/n,-f,1]T→[1,1,1,1]T

– Solve resulting equation system to obtain matrix

Week 3, Wed 17 Oct 03 © Tamara Munzner 58

Perspective Projection
• example
– Assume image plane at z = -1
– A point [x,y,z,1]T projects to [-x/z,-y/z,-z/z,1]T ≡

[x,y,z,-z]T

--zz

�
�
�
�

�

�

�
�
�
�

�

�

1
z

y
x

�
�
�
�

�

�

�
�
�
�

�

�

1
z

y
x

�
�
�
�

�

�

�
�
�
�

�

�

− z
z

y
x

�
�
�
�

�

�

�
�
�
�

�

�

− z
z

y
x

Week 3, Wed 17 Oct 03 © Tamara Munzner 59

Perspective Projection

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

≡

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�
�

�

	

�

�

�
�
�
�

�

�

�
�
�
�

�

�

1
1
/

/

10100
0100
0010

0001

1

zy

zx

z
z
y

x

z
y

x

z
y

x

T

�
�
�
�

�

�

�
�
�
�

�

�

−
−
−

≡

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�

�

�

�
�
�
�

�

�

⋅

�
�
�
�

�

�

�
�
�
�

�

�

−

=

�
�
�
�
�

�

	

�

�

�
�
�
�

�

�

�
�
�
�

�

�

1
1
/

/

10100
0100
0010

0001

1

zy

zx

z
z
y

x

z
y

x

z
y

x

T

