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* p1 demos
* sampling

© Tamara Munzner

News

hw 1 solutions out
—no more accepted as of right now
next week
—Mon: midterm

« no Mon office hours, 'm away at conferences
—Wed: Prof. van de Panne on animation
—Fri: TA Ahbijeet Ghosh on textures

« correct p1 grades posted on web site now

* project 1
—finish hall of fame demos
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Point Sampling

» multiply sample grid by image intensity to
obtain a discrete set of points, or samples.
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Spatial Domain

+ image as spatial signal
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Examples from Foley, van Dam, Feiner, and Hughes
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Spatial Domain: Summing Waves
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Frequencies: Summing Spikes
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Frequency Domain
* position: frequency
* height: strength of each frequency
—sine wave: impulse
—square wave: infinite train of impulses
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Fourier Transform Example

spatial domain frequency domain
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Sampling
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Sampling Theorem

continuous-time signal can be completely
recovered from its samples iff the sampling
rate is greater than twice the maximum
frequency present in the signal.

- Claude Shannon
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Nyquist Rate

+ the lower bound on the sampling rate
equals twice the highest frequency
component in the image’s spectrum

« this lower bound is the Nyquist Rate
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Falling Below Nyquist Rate

» when sampling below Nyquist Rate,
resulting signal looks like a lower-
frequency one
—this is aliasing!

ATy

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Colum*
bia University.)
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Flaws with Nyquist Rate

» samples may not align with peaks
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Fig. 14.16 Sampling at the Nyquist rate (a) at peaks, (b) between peaks, (c) at zero
Gossings.  (Courtesy of George Wolberg, Columbia University.)
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Nyquist Rate

-

W oW W W W W fye 2t
_}.il:i-l'li:d:p_illi:b:;ii.
dh ok dh d A A fh =2

Ld e b # 1@ [
AR AN TN TN TN T T

Week 6, Fri 10 Oct 03 © Tamara Munzner 14

Nyquist and Checkerboards

* point sampled 1D checkerboard: aliases
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Band-limited Signals

« if you know a function contains no
components of frequencies higher than x
— band-limited implies original function will not

require any ideal functions with frequencies
greater than x

— facilitates reconstruction

— avoids Nyquist Limit mistakes

« to lower Nyquist rate, remove high
frequencies from image: low-pass filter
— only low frequencies remain: band-limited
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Low-Pass Filtering
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l Low-pass filtering

= WW%

fiitered
signal e dhanontinn s

Week 6, Fri 10 Oct 03 © Tamara Munzner

Low-Pass Filtering

Sampled
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Fig. 14.20 The sampling pipeline with filtering. (Courtesy of George Wolberg:
Columbia University.)
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Filtering

* low pass
—blur

* high pass
—edge finding
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Filtering in Spatial Domain

« blurring or averaging pixels together
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Filtering in Frequency Domain
» multiply signal’s spectrum by pulse function
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Common Filters
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Dualities

— inverse relationship between size
« Tlarge -> 2m/T small
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Spatial domain

s(x)
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Sinc Function

* sinc (pulse) function is common filter:
—sinc(x) = sin (nx)/nx
—infinite in frequency domain
Spatial Domain Frequency Domain

sinc(x)
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Sampling in Spatial Domain

+ Q: what is sampling (i.e. evaluating a continuous
function at evenly spaced points)?

+ A: multiplication of the sample with a regular
train of delta functions (spikes).
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Sampling in Frequency Domain
» multiple shifted copies of S(w) are added
up during sampling

« if 27T is large enough (T is small enough)
— individual spectrum copies do not overlap

— depends on maximum frequency w in s(t)

S(@)"P(w)
ﬁ 27T
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Sampling in Frequency Domain

» multiple copies of spectrum
» example: given spectrum S(w) of a signal s(z)
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Sampling in Frequency Domain

« if T'is too large (2T is small), overlap occurs
— this is aliasing
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Undersampling leads to
aliasing.
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Samples are too close
together in f.

Spurious components :
Cause of aliasing.
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How do we remove aliasing ?

« perfect solution - prefilter with perfect bandpass

filter.

No aliasing.
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Perfect bandpass

Aliased example
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How do we remove aliasing ?

« perfect solution - prefilter with perfect
bandpass filter.
— difficult/Impossible to do in frequency domain
+ convolve with sinc function in space
domain
—optimal filter - better than area sampling.
—sinc function is infinite !!
—computationally expensive

Week 6, Fri 10 Oct 03 © Tamara Munzner

How do we remove aliasing ?

« cheaper solution : take multiple samples for
each pixel and average them together —
supersampling.

can weight them towards the centre —
weighted average sampling

+ stochastic sampling

+ importance sampling

Removing aliasing is called antialiasing
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Weighted Sampling

» multiple samples per pixel
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Stochastic Supersampling

« high frequency noise preferable to aliases

sampling grid
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Importance Sampling
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