Visualization Analysis \& Design

Idiom design choices: Visual encoding

Tamara Munzner Department of Computer Science
University of British Columbia @tamaramunnner

Color Channels in Visualization

Idiom design choices: Beyond spatial arrangement

Decomposing color

- first rule of color: do not (just) talk about color!
- color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude - ordered can show magnitude
- luminance: how bright (B / M) - Iuminance: how bright (BMM) - categorical can show identity - hue: what color

\bigcirc (®ap ${ }_{\text {Map }}$	
	Iom cateorical and ordered
\rightarrow Color	
Heen	
\rightarrow Size, Angle, Curvatur, .,	
-■ I/- 1))	
\rightarrow Shape	
\rightarrow Motion	
$\xrightarrow{\text { Diection Rate }}$ F	

Channels:What's up with color?
 - hue: what color
channels have different properties
-what they convey directly to perceptual system
how much they can convey

- how many discriminabble bins can we use?

Categorical color: limited number of discriminable bins

- human perception built
on relative comparisons
-great if color contiguous

Ordered color: limited number of discriminable bins

- human perception built on relative comparisons -great if color contiguous -surprisingly bad for absolute comparisons - noncontiguous smal regions of color -fewer bins than you want rule of thumb: $6-12$ bins,
including background and including ba
highlights

Categorical color: limited number of discriminable bins
 Milp ing th tuma Disasent

Many color space
\qquad
$\underset{\substack{\text { Unininame } \\ \text { Suraten }}}{\square}$

Many color spaces

$$
\begin{aligned}
& \begin{array}{l}
\text { - Luminance (L*), hue } \\
- \text { good for encoding }
\end{array} \\
& \text { good for encoding }(H) \text {, saturation (}(S) \\
& \text { - RGB: good for display hardware }
\end{aligned}
$$

RGB
RGB

- RGB: good for display hardware $\quad \substack{\text { Conenes ofterege } \\ \text { colortube }} \quad \square \square \square \square \square \square$

Many color spaces

- Luminance ((L*), hue (H), saturation - good for encoding - but not standard graphics/tools colorspa - RGB: good for display hardware

- RGB: good for display hardware
- poor for encoding \& interpolation

Many color spaces

- good for encoding
- but not standarg graphisstools cololspace
RGB: good for display hardware
- RGB: good for display hardware
- poor for encoding \& interopolation
- CIE LAB ($\left.L^{*} a^{*} b^{*}\right)$: good for interpolation

- but not standard graphicstools clolors
RG: good for display hardware
- poor for encoding \& interpolation

CIE LAB (L*a* $\left.{ }^{*} b^{*}\right)$: good for interpolatio

- hard to interpret, poor for encoding

- CIE LAB
$\stackrel{\text { - }}{-} \mathrm{g}$ great for for interpolating - complex shape

HSL/HSV - huelsaturation wheel intuitive saturation

- in HVV (sint 2
in HSV (single-cone) desaturated $=$ white
in HSL (double-cone) desaturated $=$ grey
- in HSL (double-cone) desaturated $=$ grey
- channels not very separable -typically not crucial to distinguish between
these with encodingddecoding typically not crucuar to odistinguis
these with encoding decoding -key point is hue vs luminannce/saturation

HSL/HSV: Pseudo-perceptual colorspace - HSL better than RGB for encoding for encoding
but beware

- L lightness $\neq L^{*}$ luminance

$\underset{\substack{\text { Conens sfthe efis } \\ \text { Colocube }}}{\square} \square \square \square \square \square$

Luminanerevalues $\quad \square \square \square \square \square \square$

RGB: good for display hardware

- poor for encoding 8 interpolation

Perceptual colorspace: $L^{*}{ }^{*} b^{*}$

- perceptual processing before optic nerve - one achromatic luminance channel ((${ }^{*}$) - edge detection through luminance contrast
 - hard to interpret, poor for encoding

- - ood
- but n
RGB:
- poor
CIE
CI
-

Many color spaces

- Luminance (L* *), hue ((H), saturation (S) - good for encoding
- but not sandard grin
- but not standard graphiststools clolorspace

RGB: good for display hardware

- poor for encoding i interolataion

- hard to interprest poor for encoding

HSL/HSV: somewhat better for encoding

- hue/saturation wheel inutitive

HSL/HSV

- HSUHSV: somewhat better for encoding

HSLHSV: somewhat better for en
-huelsaturation wheel intuitive

- ${ }^{- \text {hutelataurar }}$
saturation
-in HVV (single-cone) desaturated $=$ white
-in HSL (double-cone) desaturated $=$ grey

7

Color Constrast \& Naming

Interaction with the background
Interaction with the background: tweaking yellow for visibility

- marks with high luminance on a background with low luminance

Imgege courtes of fohn MCCann wa Maureen Soone
Bezold Effect: Outlines matter

Color naming $\begin{array}{ccc}\text { Actual color names } \\ \text { if youre a girl... }\end{array} \begin{aligned} & \text { Actual color names } \\ & \text { if you're a guy ... }\end{aligned}$

Interaction with the background: tweaking yellow for visibility

- marks with medium luminance on a background with high luminance
- marks with medium luminance on a background with high luminance

Color/Lightness constancy: Illumination conditions

Imge courtes. of John McCann vio Maureen Soione
Color Appearance

- given $\mathrm{L}, \mathrm{a}^{*}, \mathrm{~b}^{*}$, can we tell what color it is?
- no, it depends
- chromatic adaptation
- luminance adaptation
• simultaneous contrast
- spatial effects

Color naming

- nameability affects
-communication
- memorability
- can integrate into color models
- in addition to perceptual considerations

Actual color names
if you're a giri.... $\begin{aligned} & \text { Actual color names } \\ & \text { it you're a guy ... }\end{aligned}$

Interaction with the background: tweaking yellow for visibility - change luminance of marks depending on background

Map Other Channels

