
Visualization Analysis & Design

What's Vis, and Why Do It? (Ch 1)

Tamara Munzner

Department of Computer Science University of British Columbia

<u>@tamaramunzner</u>

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to hele people arry out tasks more effectively.

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people arry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people arry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

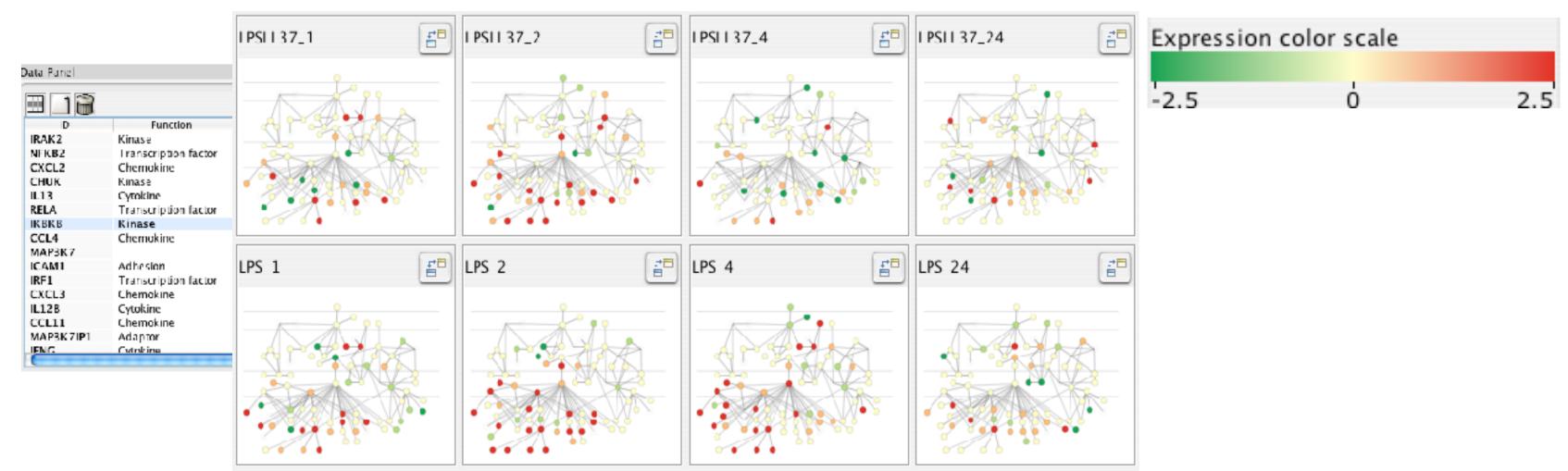
- don't need vis when fully automatic solution exists and is trusted
- many analysis problems ill-specified
 - -don't know exactly what questions to ask in advance
- possibilities
 - -long-term use for end users (ex: exploratory analysis of scientific data)
 - -presentation of known results (ex: New York Times Upshot)
 - stepping stone to assess requirements before developing models
 - -help automatic solution developers refine & determine parameters
 - -help end users of automatic solutions verify, build trust

Why use an external representation?

- Antivale Statigen rai no be a rata alla Computer-based visualization systems providevisual representations of datasets designed to help people carry out tasks more effectively.

• external representation: replace cognition with perception

						7	-
	Function	LPSLL37 1	LPSLL37 1 pvals	LPSLL37 2	LPSLL37 24	LPSLL37 24 p	vals
RAK2	Kinase	2.357	0.251	1.337	-1.553		
NFKB2	I ranscription factor	-1.14	0.972	-1.03	1.303	0.807	
CXCL2	Chemokine	1.853	0.375	4.111	-1.019	0.745	
CHUK	Kinase	-1.376	0.373	2.232	1.194	0.387	
L13	Cytokine	-5.961		2.139	-1.235	0.501	
RELA	Transcription factor	-1.077	0.564	-1.169	1.943	0.594	
KBKB	Kinase	1.167	0.29	1.421	-1.907	0.286	
CCL4	Chemokine	1.254	0.878	-1.052	1.499	0.761	
MAP3K7		1.01	0.956	-1.096	1.222	0.8	
CAMI	Adhesion	1.184	0.669	1.537	1.392	0.671	
IRF1	Transcription factor	-1.013	0.519	1.416	1.081	0.995	
CXCL3	Chemokine	1.7	0.905	1.092	-1.598	0.521	
L12B	Cytokine	-2.448	0.042	-1.473	-2.109	0.08	
CCL11	Chemokine	-1.338	0.349	-1.995	-1.785	0.129	
MAP3K7IP1	Adaptor						
IENG	Cytokina	-1.15	0.801	1.075	1.053	0.521	4 4


[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]

Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• external representation: replace cognition with perception

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]

Why depend on vision?

Computer-based visualization systems providevisual epresentations of datasets designed to help people carry out tasks more enectively.

- human visual system is high-bandwidth channel to brain
 - overview possible due to background processing
 - subjective experience of seeing everything simultaneously
 - significant processing occurs in parallel and pre-attentively
- sound: lower bandwidth and different semantics
 - overview not supported
 - subjective experience of sequential stream
- touch/haptics: impoverished record/replay capacity -only very low-bandwidth communication thus far
- taste, smell: no viable record/replay devices

Why represent all the data?

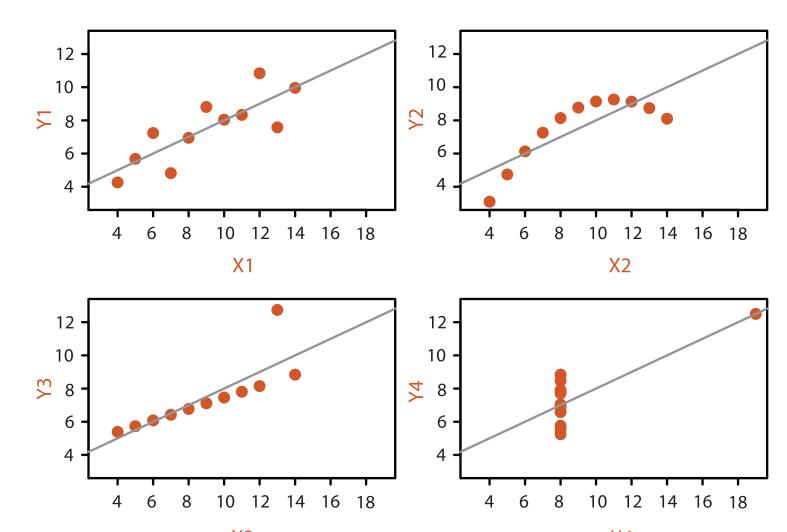
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - confirm expected and find unexpected patterns
 - -assess validity of statistical model

Anscombe's Quartet

Identical statistics

- x mea
- x vari
- y mea
- y varia
- x/y co



an	9
ance	10
an	7.5
ance	3.75
orrelation	0.816

Why represent all the data?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - -confirm expected and find unexpected patterns
 - -assess validity of statistical model

Anscombe's Quartet

Identical statistics

- x mea
- x varia
- y mea
- y varia
- x/y co

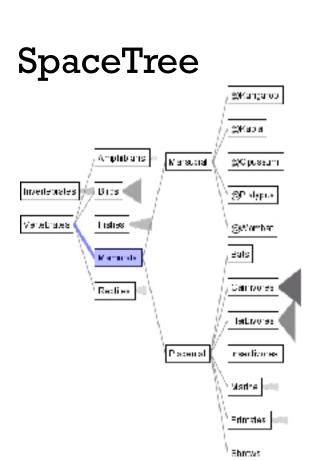
an	9
ance	10
an	7.5
ance	3.75
orrelation	0.816

What resource limitations are we faced with?

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

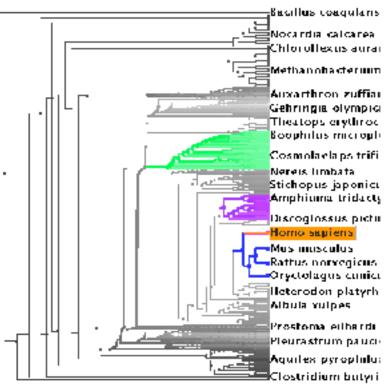
- computational limits
 - computation time, system memory
- display limits
 - -pixels are precious & most constrained resource
 - -information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space
 - find sweet spot between dense and sparse
- human limits

– human time, human memory, human attention


Why analyze?

- imposes structure on huge design space
 - -scaffold to help you think systematically about choices
 - analyzing existing as stepping stone
 to designing new
 - -most possibilities ineffective for particular task/data combination

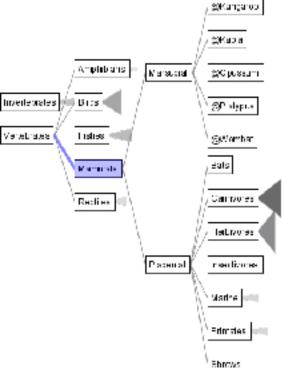
13


Why analyze?

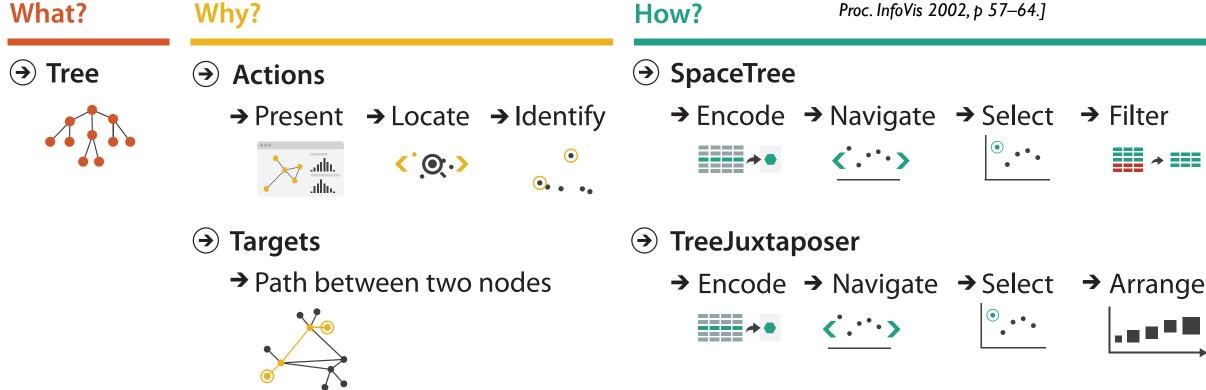
- imposes structure on huge design space
 - -scaffold to help you think systematically about choices
 - analyzing existing as stepping stone
 to designing new
 - -most possibilities ineffective for particular task/data combination

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57–64.]

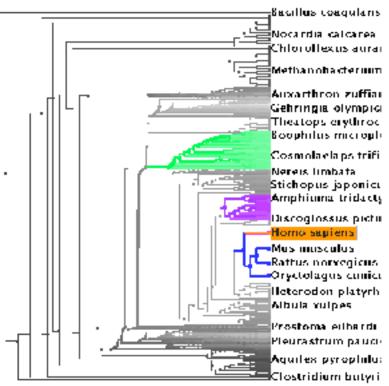
TreeJuxtaposer



[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453–462, 2003.]


Why analyze?

- imposes structure on huge design space
 - -scaffold to help you think systematically about choices
 - -analyzing existing as stepping stone to designing new
 - -most possibilities ineffective for particular task/data combination


SpaceTree

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57-64.]

TreeJuxtaposer

[Tree]uxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.]

