Visualization Analysis & Design

Marks & Channels (Ch 5) I

Tamara Munzner

Department of Computer Science University of British Columbia

<u>@tamaramunzner</u>

how to systematically analyze idiom structure?

how to systematically analyze idiom structure?

how to systematically analyze idiom structure?

- marks & channels
 - -marks: represent items or links
 - -channels: change appearance of marks based on attributes

Marks for items

• basic geometric elements

• 3D mark: volume, rarely used

Interlocking Areas

Marks for links

Containment

Connection

vialab.science.uoit.ca/portfolio/bubblesets

https://observablehq.com/@d3/force-directed-graph

Containment can be nested

Channels

- control appearance of marks
 - proportional to or
 based on attributes
- many names
 - -visual channels
 - -visual variables
 - retinal channels

— ...

-visual dimensions

Definitions: Marks and channels

- marks
 - -geometric primitives

Definitions: Marks and channels

- marks
 - -geometric primitives
- channels
 - control appearance of marks

Definitions: Marks and channels

- marks
 - -geometric primitives
- channels
 - control appearance of marks
- channel properties differ
 - type & amount of information that can be conveyed to human perceptual system

• analyze idiom structure as combination of marks and channels

• analyze idiom structure as combination of marks and channels

1: vertical position

mark: line

• analyze idiom structure as combination of marks and channels

2: vertical position horizontal position

mark: line

mark: point

analyze idiom structure as combination of marks and channels

1: vertical position 2: vertical position horizontal position

3:

vertical position horizontal position color hue

mark: line

mark: point

mark: point

analyze idiom structure as combination of marks and channels

1: vertical position 2: vertical position horizontal position

3:

vertical position horizontal position color hue

mark: line

mark: point

mark: point

4:

vertical position horizontal position color hue size (area)

mark: point

Redundant encoding

- multiple channels
 - -sends stronger message
 - -but uses up channels

Length and Luminance

Marks as constraints

• math view: geometric primitives have dimensions

Interlocking Areas

Marks as constraints

Points

(
ightarrow)

math view: geometric primitives have dimensions

Lines

- -points: 0 constraints on size, can encode more attributes w/ size & shape
- -lines: I constraint on size (length), can still size code other way (width)
- -interlocking areas: 2 constraints on size (length/width), cannot size or shape code

ID

 (\rightarrow)

• interlocking: size, shape, position

0D

Interlocking Areas

Marks as constraints

Points

(
ightarrow)

• math view: geometric primitives have dimensions

Lines

- -points: 0 constraints on size, can encode more attributes w/ size & shape
- -lines: I constraint on size (length), can still size code other way (width)
- -interlocking areas: 2 constraints on size (length/width), cannot size or shape code

ID

 (\mathbf{a})

• interlocking: size, shape, position

0D

• quick check: can you size-code another attribute -or is size/shape in use?

Interlocking Areas

Scope of analysis

- simplifying assumptions: one mark per item, single view
- later on
 - multiple views
 - multiple marks in a region (glyph)
 - -some items not represented by marks (aggregation and filtering)

When to use which channel?

expressiveness match channel type to data type

effectiveness some channels are better than others

- match channel and data characteristics

→ Magnitude Channels: Ordered Attributes

- expressiveness
 - match channel and data characteristics
- effectiveness

Best

Least

- channels differ in accuracy of perception

- match channel and data characteristics

- channels differ in accuracy of perception - spatial position ranks high for both

Grouping

- containment
- connection

Marks as Links

Visualization Analysis & Design

Marks & Channels (Ch 5) II

Tamara Munzner

Department of Computer Science University of British Columbia

<u>@tamaramunzner</u>

Channel effectiveness

- accuracy: how precisely can we tell the difference between encoded items?
- discriminability: how many unique steps can we perceive?
- separability: is our ability to use this channel affected by another one?
- popout: can things jump out using this channel?

Accuracy: Fundamental theory

- length is accurate: linear
- others magnified or compressed

-exponent characterizes

Saturation (1.7) Electric Shock (3.5) 5 4 Perceived Sensation Area (0.7) 3 Depth (0.6) Brightness (0.5) 2 1 0 2 3 0 4

Physical Intensity

Steven's Psychophysical Power Law: S= I^N

Accuracy: Vis experiments

Cleveland & McGill's Results

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203– 212.]

Discriminability: How many usable steps?

• must be sufficient for number of attribute levels to show

-linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. Integrality

Position + Hue (Color)

Fully separable

2 groups each

Separability vs. Integrality

2 groups each

2 groups each

Separability vs. Integrality

Fully separable

2 groups each

Some interference

2 groups each

Some/significant interference 3 groups total: integral area

Separability vs. Integrality

Fully separable

2 groups each

Some interference

2 groups each

Some/significant interference 3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

find the red dot

-how long does it take?

38

- find the red dot
 how long does it take?
- parallel processing on many individual channels
 - -speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 speed depends on number of distractors

many channels tilt, size, shape, proximity, shadow direction, ...

• many channels

tilt, size, shape,
proximity, shadow
direction, ...

• but not all!

 parallel line pairs do not pop out from tilted pairs

Factors affecting accuracy

- alignment
- distractors
- distance
- common scale / alignment

• perceptual system mostly operates with relative judgements, not absolute

• perceptual system mostly operates with relative judgements, not absolute -that's why accuracy increases with common frame/scale and alignment

after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.]

position along unaligned common scale

Α

R

B position along aligned scale

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - -Weber's Law: ratio of increment to background is constant

after [Graphical Perception:Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.] position along unaligned common scale

A B position along aligned scale

gements, not absolute d alignment

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - -Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

after [Graphical Perception:Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.] position along unaligned common scale

Α

R

A B position along aligned scale

gements, not absolute d alignment

Relative luminance judgements

• perception of luminance is contextual based on contrast with surroundings

http://persci.mit.edu/gallery/checkershadow

Relative luminance judgements

• perception of luminance is contextual based on contrast with surroundings

Relative color judgements

• color constancy across broad range of illumination conditions

Relative color judgements

• color constancy across broad range of illumination conditions

