Visualization Analysis \& Design

Marks \& Channels (Ch 5) I

Tamara Munzner

Department of Computer Science
University of British Columbia
@tamaramunzner

Visual encoding

- how to systematically analyze idiom structure?

Visual encoding

- how to systematically analyze idiom structure?

Visual encoding

- how to systematically analyze idiom structure?

- marks \& channels
-marks: represent items or links
-channels: change appearance of marks based on attributes

Marks for items

- basic geometric elements
Θ Points
Θ Lines

OD

ID
Θ Interlocking Areas

2D

- 3D mark: volume, rarely used

Marks for links

Θ Containment

vialab.science.uoit.ca/portfolio/bubblesets
Θ Connection

Containment can be nested

[Untangling Euler Diagrams, Riche and Dwyer, 2010]

Channels

- control appearance of marks
Θ
Position

Θ Color

Θ Tilt

Θ Size
\rightarrow Length \rightarrow Area \rightarrow Volume
- visual dimensions
-...

Definitions: Marks and channels

- marks
-geometric primitives

Definitions: Marks and channels

- marks
- geometric primitives
- channels
- control appearance of marks

Definitions: Marks and channels

- marks
-geometric primitives
- channels
- control appearance of marks
- channel properties differ
- type \& amount of information that can be conveyed to human perceptual system

Θ Position

Θ Color

Θ Shape

Θ Tilt

Θ Size

Visual encoding

- analyze idiom structure as combination of marks and channels

Visual encoding

- analyze idiom structure as combination of marks and channels

1:
vertical position
mark: line

Visual encoding

- analyze idiom structure as combination of marks and channels

l:
vertical position
mark: line

2:
vertical position horizontal position
mark: point

Visual encoding

- analyze idiom structure as combination of marks and channels

l:
vertical position
mark: line

2:
vertical position horizontal position

3:
vertical position
horizontal position color hue
mark: point

Visual encoding

- analyze idiom structure as combination of marks and channels

l:
vertical position
mark: line

2:
vertical position horizontal position
mark: point

3:
vertical position
horizontal position color hue
mark: point

4:
vertical position
horizontal position color hue size (area)
mark: point

Redundant encoding

- multiple channels
- sends stronger message
-but uses up channels

Marks as constraints

- math view: geometric primitives have dimensions
Θ Points $0 \mathrm{D} \Theta$ Lines
ID
Θ Interlocking Areas2D

Marks as constraints

- math view: geometric primitives have dimensions
\oplus
Points
\%
ID
Θ Interlocking Areas

2D

- constraint view: mark type constrains what else can be encoded - points: 0 constraints on size, can encode more attributes w/ size \& shape - lines: I constraint on size (length), can still size code other way (width) -interlocking areas: 2 constraints on size (length/width), cannot size or shape code
- interlocking: size, shape, position

Marks as constraints

- math view: geometric primitives have dimensions
Θ Points
\%
ID
Θ Interlocking Areas

2D

- constraint view: mark type constrains what else can be encoded - points: 0 constraints on size, can encode more attributes w/ size \& shape - lines: I constraint on size (length), can still size code other way (width) -interlocking areas: 2 constraints on size (length/width), cannot size or shape code - interlocking: size, shape, position
- quick check: can you size-code another attribute - or is size/shape in use?

Scope of analysis

- simplifying assumptions: one mark per item, single view
- later on
- multiple views
- multiple marks in a region (glyph)
- some items not represented by marks (aggregation and filtering)

expressiveness

 match channel type to data type
effectiveness

some channels are better than others

Channels: Rankings

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size) \qquad

-■ \square

Depth (3D position)

Color luminance

Color saturation

Curvature
()))

Volume (3D size)
Θ Identity Channels: Categorical Attributes
Spatial region

- expressiveness

- match channel and data characteristics

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)
() Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

- expressiveness

- match channel and data characteristics
- magnitude for ordered
- how much? which rank?
- identity for categorical
- what?
Θ Attribute Types
\rightarrow Categorical

\rightarrow Ordered
\rightarrow Ordinal $\quad \rightarrow$ Quantitative
\qquad
\qquad

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes

Channels: Rankings

- expressiveness

- match channel and data characteristics
- effectiveness
- channels differ in accuracy of perception
- spatial position ranks high for both

Grouping

- containment
- connection

Marks as Links

Θ Containment
Θ Connection

- - -

Θ Identity Channels: Categorical Attributes

- proximity
- same spatial region
- similarity
- same values as other categorical channels

Spatial region

Color hue

Motion

Shape

$+\bullet ■-1$

Visualization Analysis \& Design

Marks \& Channels (Ch 5) II

Tamara Munzner

Department of Computer Science
University of British Columbia
@tamaramunzner

Channel effectiveness

- accuracy: how precisely can we tell the difference between encoded items?
- discriminability: how many unique steps can we perceive?
- separability: is our ability to use this channel affected by another one?
- popout: can things jump out using this channel?

Accuracy: Fundamental theory

- length is accurate: linear Steven's Psychophysical Power Law: $S=I^{N}$
- others magnified or compressed
-exponent characterizes

Accuracy:Vis experiments

Cleveland \& McGill's Results

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203212.]

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
- linewidth: few bins

Separability vs. Integrality

Fully separable
2 groups each

Separability vs. Integrality

Fully separable
2 groups each

Size

+ Hue (Color)

Some interference
2 groups each

Separability vs. Integrality

Fully separable
2 groups each

Some interference
2 groups each

Width

+ Height

Some/significant interference 3 groups total: integral area

Separability vs. Integrality

Fully separable
2 groups each

Some interference
2 groups each

Width

+ Height

Some/significant interference
3 groups total: integral area

Red

+ Green

Major interference
4 groups total: integral hue

Popout

- find the red dot
-how long does it take?

Popout

- find the red dot
-how long does it take?

Popout

- find the red dot
-how long does it take?

Popout

- find the red dot
-how long does it take?

Popout

- find the red dot
-how long does it take?

Popout

- find the red dot
-how long does it take?

Popout

- find the red dot
-how long does it take?

Popout

- find the red dot
-how long does it take?
- parallel processing on many individual channels
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
- speed depends on number of distractors

Popout

- many channels
-tilt, size, shape, proximity, shadow direction, ...

Popout

- many channels -tilt, size, shape, proximity, shadow direction,...
- but not all!
- parallel line pairs do not pop out from tilted pairs

Factors affecting accuracy

- alignment
- distractors
- distance
- common scale / alignment

I

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute -that's why accuracy increases with common frame/scale and alignment

after [Graphical Perception:Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (I984), 53I-554.]

position along unaligned common scale

position along aligned scale

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
-that's why accuracy increases with common frame/scale and alignment -Weber's Law: ratio of increment to background is constant
 to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (I984), 53I-554.]

position along unaligned common scale

position along aligned scale

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
-that's why accuracy increases with common frame/scale and alignment
-Weber's Law: ratio of increment to background is constant
- filled rectangles differ in length by I:9, difficult judgement
- white rectangles differ in length by $\mathrm{I}: 2$, easy judgement

Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings

Relative luminance judgements

- perception of luminance is contextual based on contrast with surroundings

Relative color judgements

- color constancy across broad range of illumination conditions

Relative color judgements

- color constancy across broad range of illumination conditions

