Visualization Analysis & Design

Spatial Data (Ch 9)

Tamara Munzner

Department of Computer Science University of British Columbia

<u>@tamaramunzner</u>

Focus on Spatial

s) **→** Geometry (Spatial)

How?

Manipulate

→ Change

→ Select

•••

→ Navigate

<...>

→ Partition

→ Aggregate

How?

→ Partition

→ Aggregate

Spatial data

- use given spatial position
- when?
 - -dataset contains spatial attributes and they have primary importance
 - central tasks revolve around understanding spatial relationships
- examples
 - -geographical/cartographic data
 - -sensor/simulation data

nportance ships

Geographic Maps

6

Geographic Map

Interlocking marks shape coded area coded position coded

cannot encode another attribute with these channels, they're "taken"

Thematic maps

- show spatial variability of attribute ("theme")
 - -combine geographic / reference map with (simple, flat) tabular data
 - -join together
 - region: interlocking area marks (provinces, countries with outline shapes)
 - also could have point marks (cities, locations with 2D lat/lon coords)
 - region: categorical key attribute in table

- use to look up value attributes

- major idioms
 - choropleth
 - symbol maps
 - cartograms
 - dot density maps

Idiom: choropleth map

- use given spatial data
 - -when central task is understanding spatial relationships
- data
 - geographic geometry
 - -table with I quant attribute per region
- encoding
 - -position:

use given geometry for area mark boundaries

-color:

sequential segmented colormap

http://bl.ocks.org/mbostock/4060606

[https://xkcd.com/1138]

• spurious correlations: most attributes just show where people live

[https://xkcd.com/1138]

- spurious correlations: most attributes just show where people live
- consider when to normalize by population density
 - encode raw data values
 - tied to underlying population
 - but should use normalized values
 - unemployed people per 100 citizens, mean family income

[https://xkcd.com/1138]

- spurious correlations: most attributes just show where people live
- consider when to normalize by population density
 - encode raw data values
 - tied to underlying population
 - but should use normalized values
 - unemployed people per 100 citizens, mean family income
- general issue
 - -absolute counts vs relative/normalized data
 - -failure to normalize is common error

[https://xkcd.com/1138]

Choropleth maps: Recommendations

- only use when central task is understanding spatial relationships
- show only one variable at a time
- normalize when appropriate
- be careful when choosing colors & bins
- best case: regions are roughly equal sized

Choropleth map: Pros & cons

pros

- -easy to read and understand
- -well established visualization (no learning curve)
- data is often collected and aggregated by geographical regions

• cons

- -most effective visual variable used for geographic location
- -visual salience depends on region size, not true importance wrt attribute value
 - large regions appear more important than small ones
- -color palette choice has a huge influence on the result

Idiom: Symbol maps

- symbol is used to represent aggregated data (mark or glyph)
 - -allows use of size and shape and color channels
 - aka proportional symbol maps, graduated symbol maps
- keep original spatial geometry in the background
- often a good alternative to choropleth maps

Symbol maps with glyphs

Shares of agricultural, forest and settlement area

Symbol map: Pros & cons

- pros
 - -somewhat intuitive to read and understand
 - -mitigate problems with region size vs data salience
 - marks: symbol size follows attribute value
 - glyphs: symbol size can be uniform
- cons
 - -possible occlusion / overlap
 - symbols could overlap each other
 - symbols could occlude region boundaries
 - -complex glyphs may require explanation / training

18

Idiom: Contiguous cartogram

- interlocking marks: shape, area, and position coded
- derive new interlocking marks
 - -based on combination of original interlocking marks and new quantitative attribute
- algorithm to create new marks
 - -input: target size
 - -goal: shape as close to the original as possible
 - requirement: maintain constraints
 - relative position
 - contiguous boundaries with their neighbours

Child Mortality

Idiom: Grid Cartogram

- uniform-sized shapes arranged in rectilinear grid
- maintain approximate spatial position and arrangement

Cartogram: Pros & cons

pros

- can be intriguing and engaging
- -best case: strong and surprising size disparities
- -non-contiguous cartograms often easier to understand

cons

- require substantial familiarity with original dataset & use of memory

- compare distorted marks to memory of original marks
- mitigation strategies: transitions or side by side views
- -major distortion is problematic
 - may be aesthetically displeasing
 - may result in unrecognizable marks
- difficult to extract exact quantities

Idiom: Dot density maps

- visualize distribution of a phenomenon by placing dots
- one symbol represents a constant number of items
 - dots have uniform size & shape
 - -allows use of color channel
- task: show spatial patterns, clusters

Dot density maps: Pros and cons

• pros

- straightforward to understand
- -avoids choropleth non-uniform region size problems
- cons
 - challenge: normalization, just like choropleths
 - show population density (correlated with attribute), not effect of interest
 - -perceptual disadvantage: difficult to extract quantities
 - -performance disadvantage: rendering many dots can be slow

Map Projections

- mathematical functions that map 3D surface geometry of the Earth to 2D maps
- all projections of sphere on plane necessarily distort surface in some way
- interactive: philogb.github.io/page/myriahedral/ and jasondavies.com/maps/

Mercator Projection

Visualization Analysis & Design

Spatial Data (Ch 9) II

Tamara Munzner

Department of Computer Science University of British Columbia

<u>@tamaramunzner</u>

Focus on Spatial

Spatial Fields

28

Idiom: topographic map

- data
 - geographic geometry
 - -scalar spatial field
 - I quant attribute per grid cell
- derived data
 - -isoline geometry
 - isocontours computed for specific levels of scalar values
- task
 - understanding terrain shape
 - densely lined regions = steep
- pros
 - use only 2D position, avoid 3D challenges
 - color channel available for other attributes
- cons
 - significant clutter from additional lines

Land Information New Zealand Data Service

Idioms: isosurfaces, direct volume rendering

• data

- -scalar spatial field (3D volume)
 - I quant attribute per grid cell
- task
 - shape understanding, spatial relationships

[Interactive Volume Rendering Techniques. Kniss. Master's thesis, University of Utah Computer Science, 2002.] [Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 189–210. Elsevier, 2005.]

Idioms: isosurfaces, direct volume rendering

- data
 - -scalar spatial field (3D volume)
 - I quant attribute per grid cell
- task

- -shape understanding, spatial relationships
- isosurface
 - derived data: isocontours computed for specific levels of scalar values

[Interactive Volume Rendering Techniques. Kniss. Master's thesis, University of Utah Computer Science, 2002.]

[Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 189–210. Elsevier, 2005.]

Idioms: isosurfaces, direct volume rendering

- data
 - -scalar spatial field (3D volume)
 - I quant attribute per grid cell
- task

- -shape understanding, spatial relationships
- isosurface
 - derived data: isocontours computed for specific levels of scalar values
- direct volume rendering
 - -transfer function maps scalar values to color, opacity
 - no derived geometry

[Interactive Volume Rendering Techniques. Kniss. Master's thesis, University of Utah Computer Science, 2002.]

[Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 189–210. Elsevier, 2005.]

Vector and tensor fields

• data

- multiple attribs per cell (vector: 2)

- idiom families
 - -flow glyphs
 - purely local
 - -geometric flow
 - derived data from tracing particle trajectories
 - sparse set of seed points
 - -texture flow
 - derived data, dense seeds
 - *feature flow*
 - global computation to detect features

GSTR [Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Vector fields

- empirical study tasks
 - -finding critical points, identifying their types
 - -identifying what type of critical point is at a specific location
 - -predicting where a particle starting at a specified point will end up (advection)

Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans.

Idiom: similarity-clustered streamlines

- data
 - 3D vector field
- derived data (from field)

 streamlines: trajectory particle will follow
- derived data (per streamline)
 - curvature, torsion, tortuosity
 - signature: complex weighted combination
 - compute cluster hierarchy across all signatures
 - encode: color and opacity by cluster
- tasks
 - find features, query shape
- scalability
 - millions of samples, hundreds of streamlines

[Similarity Measures for Enhancing Interactive Streamline Seeding. McLoughlin,. Jones, Laramee, Malki, Masters, and. Hansen. IEEE Trans. Visualization and Computer Graphics 19:8 (2013), 1342–1353.]

Idiom: Ellipsoid Tensor Glyphs

- data
 - tensor field: multiple attributes at each cell (entire matrix)
 - stress, conductivity, curvature, diffusivity...
 - -derived data:
 - shape (eigenvalues)
 - orientation (eigenvectors)
- visual encoding
 - -glyph: 3D ellipsoid

[Superquadric Tensor Glyphs. Kindlmann. Proc. VisSym04, p147-154, 2004.]

Arrange spatial data

- → Use Given
 - → Geometry
 - → Geographic

→ Spatial Fields

- → Scalar Fields (one value per cell)
 - → Isocontours
 - → Direct Volume Rendering
- → Vector and Tensor Fields (many values per cell)
 - → Flow Glyphs (local)
 - → Geometric (sparse seeds)
 - → Textures (dense seeds)
 - → Features (globally derived)

37