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Complexity and SAT

Time complexity is key in theoretical CS and practical applications

Scaling of running time as function of instance size

Propositional satis�ability problem (SAT)

First problem proved to be N P-complete (Cook, 1971)

Intense academic interest & many practical applications

Dramatic & sustained progress in SAT solving
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Background � Phase Transition

Soluability phase transition: 50% of random instances satis�able

Figure from (Mitchell et al., 1992)
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Background � Phase Transition

Soluability phase transition: 50% of random instances satis�able

Phase transition is sharp (Cheeseman et al., 1991)

Believed to converge to �xed threshold

Widely studied instance distribution

Prominent model of computational hardness in SAT and beyond

I For DPLL-based solvers (Mitchell et al., 1992)
I For SLS-based solvers (Yokoo, 1997)
I · · ·
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Location of Phase Transition

Best previous model (Crawford and Auton, 1996):

mc = 4.258 ·n+58.26 ·n−2/3

Weaknesses:

Inconsistent with results from cavity method (Mertens et al., 2006):

lim
n→∞

mc/n = 4.26675±0.00015

Under-estimates mc for larger n
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Location of Phase Transition
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Questions & Experiments

Scienti�c questions:

How do running times of high-performance SAT solvers scale?

Is scaling di�erence between solvers signi�cant?

I Between SLS- and DPLL-based solvers?
I Between two solvers of same kind?

How much faster are complete solvers solving satis�able instances?

Solvers studied:

DPLL-based: kcnfs, march_hi, march_br

SLS-based: WalkSAT/SKC, BalancedZ, probSAT
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Related Work

Observations on empirical scaling of:

SLS-based solvers, e.g., Gent and Walsh (1993); Gent et al. (1997)

DPLL-based solvers, e.g., Coarfa et al. (2003)

Limitations:

# variable �ips vs. actual running times,
e.g., Gent and Walsh (1993); Gent et al. (1997)

Inconclusive results, e.g., Gent and Walsh (1993)

Simple curve �tting & vague de�nition of �good �t�
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Methodology (Hoos, 2009; Hoos and Stützle, 2014)

solver
running
times

�t parametric
models

challenge by
extrapolation

result
use bootstrap re-sampling
for further assessment

Extensions made in this work:

Use con�dence intervals of observed data to assess models

Compare scaling models of two solvers based on con�dence intervals
of observed/predicted data
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Empirical Scaling Results � DPLL-based Solvers
Divide instance sets into support and challenge:

n 200 250 300 350 400
median 0.040 0.200 0.950 5.455 27.580

n 450 500 550
median 156.480 750.510 3896.450
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Empirical Scaling Results � DPLL-based Solvers
Fit parametric models:

Model
RMSE RMSE

(support) (challenge)

kcnfs
Exp. Model 4.30400×10−5×1.03411n 0.05408 143.3

Poly. Model 9.40745×10−31×n12.1005 0.06822 1516
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Empirical Scaling Results � DPLL-based Solvers
Bootstrap re-sampling:

Solver n
Predicted con�dence intervals Observed median run-time (sec)

Poly. model Exp. model Point estimates Con�dence intervals

kcnfs
450 [98.326,122.115] [120.078,161.444] 156.480 [143.340,166.770]
500 [327.997,439.089] [561.976,889.428]* 750.510 [708.290,806.130]
550 [971.862,1402.255] [2622.488,4901.661]* 3896.450 [3633.630,4130.915]
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Empirical Scaling Results � DPLL-based Solvers
Bootstrap re-sampling:

Solver Model Con�dence interval of a Con�dence interval of b

kcnfs
Poly.

[
3.33969×10−31,4.30846×10−29

]
[11.4234,12.2674]

Exp.
[
3.33378×10−5,1.07425×10−4

]
[1.03136,1.03476]
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Empirical Scaling Results � DPLL-based Solvers

Compare scaling models:

No signi�cant di�erence between two march-variants

Two march-variants scale signi�cantly better than kcnfs

Scaling models of march_hi:
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Empirical Scaling Results � DPLL-based Solvers

Compare scaling models:

No signi�cant di�erence between two march-variants

Two march-variants scale signi�cantly better than kcnfs
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Empirical Scaling Results � DPLL-based Solvers

Di�erence in solving satis�able instances and unsatis�able instances:

Is the di�erence a constant factor?

Fit running times of solving unsatis�able instances with model a ·bnsat

I Slower in solving unsatis�able instances by constant factor only
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Empirical Scaling Results � SLS-based Solvers
Fit parametric models:

Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 6.89157×10−4×1.00798n 0.0008564 0.7600

Poly. Model 8.83962×10−11×n3.18915 0.0007433 0.03142
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Empirical Scaling Results � SLS-based Solvers
Bootstrap re-sampling:

Solver n
Predicted con�dence intervals Observed median run-time (sec)
Poly. model Exp. model Point estimates Con�dence intervals

WalkSAT/SKC
600 [0.054,0.081] [0.067,0.104] 0.056 [0.050,0.070]
...

...
...

...
...

1000 [0.229,0.557]* [1.151,4.200] 0.385 [0.327,0.461]
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Empirical Scaling Results � SLS-based Solvers
Bootstrap re-sampling:

Solver Model Con�dence interval of a Con�dence interval of b

WalkSAT/SKC
Exp.

[
4.05064×10−4,1.00662×10−3

]
[1.00709,1.00924]

Poly.
[
2.58600×10−12,8.63869×10−10

]
[2.80816,3.76751]
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Empirical Scaling Results � SLS-based Solvers

No signi�cant di�erence among scaling models for WalkSAT/SKC,
BalancedZ & probSAT

Higher quantiles:

Scaling of 0.75- and 0.9-quantile of running times still consistent
with polynomial model

Even larger instances:

Limited experiments on instances of n ∈ {1500,2000,5000}
Data consistent with polynomial models
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Conclusions

Re�ned model for location of 3-SAT phase transition

Empirical scaling results for phase-transition random 3-SAT:

How do running times of high-performance SAT solvers scale?

I DPLL-based solvers: exponentially; SLS-based solvers: polynomially

Is scaling di�erence between solvers signi�cant?

I March-variants scale signi�cantly better than kcnfs
I No signi�cant di�erences between SLS-based solvers

How much faster are complete solvers solving satis�able instances?

I Constant factor only

Methodology applicable to other algorithms, instances and problems

ESA: automated tool for scaling analysis (Mu and Hoos, 2015)
www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html
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