
Random-walk Domination in Large Graphs
Rong-Hua Li #, Jeffrey Xu Yu ∗†, Xin Huang ∗, and Hong Cheng ∗

Guangdong Province Key Laboratory of Popular High Performance Computers, Shenzhen University, China
∗ The Chinese University of Hong Kong

† Key Laboratory of High confidence Software Technologies Ministry of Education (CUHK Sub-Lab)
{rhli, yu, xhuang, hcheng}@se.cuhk.edu.hk

Abstract—We introduce and formulate two types of random-
walk domination problems in graphs motivated by a number
of applications in practice (e.g., item-placement problem in
online social networks, Ads-placement problem in advertisement
networks, and resource-placement problem in P2P networks).
Specifically, given a graph G, the goal of the first type of random-
walk domination problem is to target k nodes such that the
total hitting time of an L-length random walk starting from
the remaining nodes to the targeted nodes is minimized. The
second type of random-walk domination problem is to find k
nodes to maximize the expected number of nodes that hit any
one targeted node through an L-length random walk. We prove
that these problems are two special instances of the submodular
set function maximization with cardinality constraint problem. To
solve them effectively, we propose a dynamic-programming (DP)
based greedy algorithm which is with near-optimal performance
guarantee. The DP-based greedy algorithm, however, is not
very efficient due to the expensive marginal gain evaluation.
To further speed up the algorithm, we propose an approximate
greedy algorithm with linear time complexity w.r.t. the graph
size and also with near-optimal performance guarantee. The
approximate greedy algorithm is based on carefully designed
random walk sampling and sample-materialization techniques.
Extensive experiments demonstrate the effectiveness, efficiency
and scalability of the proposed algorithms.

I. INTRODUCTION

Given a graph G = (V,E) with n = |V | nodes and
m = |E| edges, how can we target k nodes such that the
targeted nodes can be easily reached by the remaining nodes
through an L-length random walk where the random walk
moves at most L hops? And how can we find k nodes so
as to maximize the expected number of nodes that hit any
one targeted node by the L-length random walk? We refer to
these two problems as two types of random-walk domination
problems, because a node hitting any one targeted node can
be regarded as that the targeted nodes dominate such a node
by an L-length random walk. Intuitively, the random-walk
domination problems are very difficult because there are C k

n

possible solutions and for each solution one should perform
n−k calculations to check (or record the hitting time) whether
or not a node reaches any one targeted node by the L-length
random walk. These problems are encountered in many data
mining and social network applications. Some of them are
discussed as follows.

A. Motivation

Item-placement problem in online social networks: Re-
cently, social networking service has become an important
medium for users to search for information online [1], [2],

[3], [4]. In many online social networks, users primarily rely
on a social process called social browsing [1], [2] to find
information. Specifically, social browsing depicts a process that
the users in a social network find information along their social
ties [1], [2]. For example, in an online photo-sharing website
Flickr (http://www.flickr.com), a user can view his friends’
photos via their home-pages. Once the user arrives at one of his
friends’ home-page, then he is also able to apply the same way
to browse the photos created by his friend’s friends. Clearly, the
next home-page that a user will visit depends on the current
home-page where he is browsing. Therefore, a user’s social
browsing process can be regarded as a random-walk process
on the social network. Furthermore, users typically have an
implicit time-limit to browse the others’ home-pages because
users cannot browse an infinite number of home-pages. As a
result, we can model the social browsing process as an L-
length random walk by assuming that each user visits at most
L home-pages in a social browsing process.

Based on the social browsing process, two interesting
questions are: (1) how to place items (e.g., news, photos,
videos, and applications) on a small fraction of users in a
social network so that the other users can easily discover such
items via social browsing, and (2) how to place items on a
small fraction of users so that as many users as possible can
search for such items by social browsing. Let us consider a
more concrete application in Facebook social network. Assume
that an application developer wants to popularize his Facebook
application. Then, he may select a small fraction of users,
say k users, to install his application for free. Note that in
Facebook, if a user has installed an application, then his friends
can view it by browsing his home-page (social browsing).
Now the question is how to select k users so that the other
users can easily find such an application (or as many users
as possible can find such an application). Since we model
the social browsing process as an L-length random walk,
these questions are actually two instances of the random-walk
domination problems.

Optimizing Ads-placement in advertisement networks: A
similar example is also encountered in online advertisement
networks, where an advertisement developer would like to
place an advertisement (Ad) on a small fraction of users (he
may pay for these users) so that it can be easily found by other
users via social browsing (or as many users as possible can find
such an Ad by social browsing). Likewise, we can model the
user-information-finding process in the advertisement networks

as an L-length random walk. As a consequence, these prob-
lems become two instances of the random-walk domination
problems.

Accelerating resource search in P2P networks: The study of
the random-walk domination problems could also be beneficial
to accelerate resource search in P2P networks. Specifically, in
a P2P network, how to place resources on a small number of
peers such that other peers can easily search for such resources
via some pre-specified search strategies. In P2P networks, a
commonly-used search strategy is based on random walk [5].
Moreover, a resource-search process in P2P networks typically
has a lifespan. That is to say, the resource-search process
generally has a time-limit or hop-limit. Therefore, we can
also model the resource-search process in P2P networks as
an L-length random walk, i.e., the resource-search process
searches at most L peers in its lifespan. Clearly, based on
the L-length random walk, the resource-placement problem in
P2P network is an instance of the random-walk domination
problem. Therefore, using the results of the random-walk
domination problems can accelerate the resource search in P2P
networks.

B. Our main contributions

This paper presents the first study on the random-walk
domination problems. Our goal is to formulate the random-
walk domination problems and devise efficient and effective
algorithms for these problems which can be directly applied to
all the above applications. In particular, we first formulate two
types of random-walk domination problems described above
as two discrete optimization problems respectively. Then, we
prove that these two problems are the instances of submodular
set function maximization with cardinality constraint problem
[6]. In general, such problems are NP-hard [6]. Therefore, we
resort to develop approximate algorithms to solve them effi-
ciently. To this end, we devise a dynamic programming (DP)
based greedy algorithm to solve these problems effectively.
By a well-known result [6], the DP-based greedy algorithm
achieves a 1 − 1/e (≈ 0.63) approximation factor. However,
the time complexity of the DP-based greedy algorithm is
over cubic w.r.t. the network size, thus it can only work
well in the small graphs. To overcome this drawback, we
develop an approximate greedy algorithm based on carefully
designed random walk sampling and sample materialization
techniques. The time and space complexity of the approximate
greedy algorithm are linear w.r.t. the graph size, thus it can be
scalable to handle large graphs. Moreover, we show that the
approximate greedy algorithm is able to achieve a 1− 1/e− ε
approximation factor, where ε is a very small constant. Fi-
nally, we conduct comprehensive experiments to evaluate the
proposed algorithms. The results indicate that the performance
of the approximate greedy algorithm is very similar to that of
the DP-based greedy algorithm, and it is substantially better
than the baselines. In addition, the results confirm that the
approximate greedy algorithm scales linearly w.r.t. the graph
size.

The rest of this paper is organized as follows. Below, we
will briefly review the existing studies that are related to
ours. After that, we formulate the random-walk domination
problems in Section II. We propose the DP-based greedy al-
gorithm and the approximate greedy algorithm for solving the
random-walk domination problems in Section III. Extensive
experiments are reported in Section IV. We conclude this work
and discuss some future directions in Section V.

C. Related work

Our problems are closely related to the dominating set
problem in graphs. The dominating set problem is a classic
NP-hard problem which has been well-studied in the literature
[7], [8]. There is an O(log n) approximate algorithm for
solving this problem efficiently [8]. Moreover, it has turned
out that such an approximation factor is optimal unless P=NP
[8], [9]. The dominating set has been widely used in the
networking community due to a large number of applications
in wireless sensor networks [10], [11] and other Ad Hoc
networks [12], [13]. Recently, many different extensions of the
dominating set problem have also been investigated. Notable
examples include the distributed dominating set problem [14],
the connected dominating set problem [15], [16], [11], [12],
the Steiner connected dominating set problem [16], and the k-
dominating set problem [8], [10]. All of these extensions are
based on the traditional definition of domination [7] where the
nodes deterministically dominate their immediate (or L-hop)
neighbors. In our work, the problems are based on a newly
defined concept called random-walk domination in which the
targeted nodes dominate an L-hop neighbor if and only if such
a neighbor-node hits at least one targeted node through an L-
length random walk.

Our work is also related to the submodular set function max-
imization problem [6]. Generally, the problem of submodular
function maximization subject to cardinality constraint is NP-
hard. Nemhauser et al. [6] propose a greedy algorithm with
1 − 1/e approximation factor to settle this issue. Recently,
many applications have been formulated as the submodular
set function maximization subject to cardinality constraint
problem. Some notable examples include the classic maximal
k coverage problem [9], the influence maximization problem
in social networks [17], the outbreak detection problem in
networks [18], the observation selection and sensor placement
problem [19], the document summarization problem [20],
the privacy preserving data publishing problem [21], and the
diversified ranking problem [22], [23]. All of these problems
can be approximately solved by the greedy algorithm given
in [6]. Here we study two random-walk domination problems
in graphs, and we show that both of them can also be
formulated as the submodular set function maximization with
cardinality constraint problem. Also, we present a near-optimal
approximate greedy algorithm to solve them efficiently.

II. PROBLEM STATEMENT

Consider an undirected and un-weighted graph G = (V,E)
with n = |V | nodes and m = |E| edges. Although we only

v1

v2 v3 v4

v5

v6 v7 v8

Fig. 1. Running example.

focus on undirected and un-weighted graphs in this paper, the
proposed techniques can also be easily extended to directed
and weighted graphs. Below, we first introduce some useful
concepts of random walk on graphs, and then we formulate
two different types of random-walk domination problems.

A random walk on an undirected and un-weighted graph
denotes the following process. Given an undirected and un-
weighted graph G and a starting node u, the random walk
picks a neighbor-node of u uniformly at random and moves
to this neighbor-node, and then follows this way recursively
[24]. In this work, we concentrate on a general random walk
model called L-length random walk where the path length of
the random walk is bounded by a nonnegative integer L [25].
We emphasize that the traditional random walk is a special
case of the L-length random walk by setting the parameter L
to infinity. Moreover, as discussed in Section I, many practical
applications should be modeled by the L-length random walk.

Next, we define an important concept called hitting time
of the L-length random walk. In particular, the hitting time
between the source and targeted nodes measures the expected
number of hops taken by an L-length random walk starting
from the source node and ending at the targeted node for the
first time. Formally, denote by Z t

u the position of an L-length
random walk starting from node u at discrete time t. Let T L

uv

be a random variable defined as

TL
uv

Δ
= min{min{t : Zt

u = v, t ≥ 0}, L}. (1)

Then, the hitting time between node u and v denoted by hL
uv

is defined as the expectation of T L
uv, i.e., hL

uv
Δ
= E[TL

uv]. By this
definition, the following lemma immediately holds.

Lemma 2.1: For any nodes u and v, the hitting time hL
uv is

bounded by L, i.e., hL
uv = E[TL

uv] ≤ L.
The following theorem shows that the exact hitting time

between two nodes can be computed recursively.
Theorem 2.2: Let du be the degree of node u and N(u)

be the set of neighbor nodes of u. Further, let puw = 1/du
be the transition probability for w ∈ N(u), and puw = 0 for
w /∈ N(u). Then, for any nodes u and v, hL

uv can be recursively
computed by

hL
uv =

{
0, u = v
1 +

∑
w∈V puwh

L−1
wv , u �= v,

(2)

where hL−1
wv denotes the hitting time between w and v based

on an (L − 1)-length random walk.
Proof: See Appendix.

Remark: Sarkar and Moore in [25] define the hitting time of
the L-length random walk in a recursive manner which is given
in Eq. (2). Note that our definition is more intuitive than their

definition because our definition is based on Eq. (1) in which
the hitting time is “explicitly” bounded by L. In the above
theorem, we show that our definition of hitting time can be
computed by the same recursive equation (Eq. (2)) as defined
in [25]. Furthermore, by our definition, the hitting time is an
expectation of the random variable T L

uv, thus it is very easy
to design a sampling-based algorithm to estimate the hitting
time.

A. The random-walk domination problems

Based on the L-length random walk model, we introduce
two types of random-walk domination problems in graphs. We
describe the first type of random-walk domination problem as
follows. Denote by S ⊆ V a subset of nodes. Assume that
there is an L-length random walk starting from a node u ∈ V .
If such a random walk reaches any one node in S at any
discrete time in [0, L], we call that u hits S or S dominates u
by an L-length random walk. For example, consider the graph
shown in Fig. 1. Suppose that S = {v5, v6} and L = 4. There
is an L-length random walk (v1, v2, v3, v2, v6) starting from
v1. Since this random walk reaches node v6 and v6 ∈ S, we
call that v1 hits S or S dominates v1. Clearly, if u ∈ S, then
u hits S. Below, we define another important concept called
generalized hitting time which measures the hitting time from
a single source node to a set of targeted nodes S. Specifically,
let TL

uS be a random variable defined as

TL
uS

Δ
= min{min{t : Zt

u ∈ S, t ≥ 0}, L}. (3)

By this definition, T L
uS denotes the number of hops of that the

L-length random walk starting at u hits any one node in S
for the first time. Note that if S = ∅, we have T L

uS = L. This
is because if S is an empty set, u cannot hit S, and thereby
min{t : Zt

u ∈ S, t ≥ 0} is infinity. In addition, if L = 0,
TL
uS = 0 because min{t : Z t

u ∈ S, t ≥ 0} ≥ 0. Based on T L
uS ,

the generalized hitting time from u to S denoted by hL
uS is

defined as the expectation of T L
uS , i.e., hL

uS
Δ
= E[TL

uS]. By this
definition, the smaller hL

uS suggests that the node u is easier to
reach a node in S through an L-length random walk. Similarly,
the generalized hitting time can be computed recursively by the
following theorem.

Theorem 2.3: For any node u and set S, hL
uS can be

computed by

hL
uS =

{
0, u ∈ S
1 +

∑
w∈V \S puwh

L−1
wS , u /∈ S.

(4)

Proof: The proof is very similar to the proof of Theo-
rem 2.2, thus we omit it for brevity.

By definition, if L = 0, we have hL
uS = 0 because

T 0
uS = 0. Based on the generalized hitting time, the first

type of random-walk domination problem is to minimize the
sum of the generalized hitting time from the nodes in V \S to
the targeted set of nodes S subject to |S| ≤ k. Formally, the
problem is formulated as

min
∑

u∈V \S
hL
uS

s.t. |S| ≤ k.
(5)

It is easy to verify that the above optimization problem is
equivalent to the following one. For convenience, in the rest
of this paper, we refer to the following problem as the first
type of random-walk domination problem and it is denoted by
Problem (1).

Problem (1):
maxnL− ∑

u∈V \S
hL
uS

s.t. |S| ≤ k.
(6)

Next, we formulate the second type of random-walk dom-
ination problem. Let XL

uS be a random variable such that
XL

uS = 1 if u hits any one node in S by an L-length random
walk, XL

uS = 0 otherwise. Given a graph G and a constant
k, the second type of random-walk domination problem is to
maximize the expected number of nodes that can be dominated
by S subject to a cardinality constraint, i.e., |S| ≤ k. Formally,
the problem is stated as

Problem (2):
maxE[

∑
u∈V

XL
uS]

s.t. |S| ≤ k.
(7)

Let pLuS be the probability of an event that an L-length
random walk starting from node u successfully hits a node in
S. Then, we have E[XL

uS] = pLuS . Moreover, by definition, the
following theorem holds.

Theorem 2.4: For L > 0, we have

pLuS =

{
1, u ∈ S∑

w∈V puwp
L−1
wS , u /∈ S.

(8)

Proof: The proof can be easily obtained by definition, we
therefore omit it for brevity.

For L = 0, we define p0uS = 1 if u ∈ S, p0uS = 0 otherwise.
The rationale is that a 0-length random walk means that the
walk does not move to any other nodes. Therefore, if u ∈ S,
we have p0uS = 1, p0uS = 0 otherwise. Note that Problem
(2) is different from Problem (1), because Problem (2) is to
maximize the expected number of nodes that hit the targeted set
by the L-length random walk, while Problem (1) is to minimize
the total expected time (or the expected number of hops) of
which every node hits the targeted set.

B. Discussion

Here we discuss the differences between Problem (2)
and the influence maximization problem in social networks.
Specifically, the influence maximization problem is to select
k nodes to maximize the expected influence spread from
those k nodes based on an influence spread model [17]. A
commonly-used influence spread model is the independent
cascade model [17]. Under the independent cascade model,
the social network is modeled by a probabilistic graph, where
each edge is associated with a probability and all of those
probabilities are independent of one another. The influence
maximization problem is to select k nodes to maximize the
expected number of nodes that are reachable from the selected
nodes. Recall that Problem (2) is to select k nodes to maximize
the expected number of nodes that can reach a node in

the targeted node set following an L-length random walk.
Although these two problems are seemingly similar, Problem
(2) is essentially different from the influence maximization
problem. The reasons are described as follows. First, Problem
(2) is based on the L-length random walk model which is a
Markov-Chain model where the visiting probability of a node
depends on the visiting probability of its immediate neighbors.
The influence maximization problem, however, is based on the
independent cascade model where the probabilities associated
with the edges are independent of one another. Second, in
the influence maximization problem, a targeted node could
influence multiple immediate neighbors at a discrete time.
However, in an L-length random walk model, each node only
follows one immediate neighbor. Let us consider a concrete
example to illustrate this point. For example, in Fig. 1, we
assume that there is a 4-length random walk (v1, v2, v3, v2, v6)
starting from v1. Suppose that in the independent cascade
model, the node v1 has successfully influenced nodes v2 and
v3. Clearly, in this case, v1 has only one descendant node
in the L-length random walk model, while in the independent
cascade model v1 has two. Finally, the influence maximization
problem relies on the predefined influence probabilities which
are the input parameters. In Problem (2), we do not require
the knowledge of influence probabilities. The input parameters
of our problems are the graph topology and the parameter
k. Due to these differences, the techniques proposed to solve
the influence maximization problem cannot be applied to our
problems. In the next section, we shall develop several effective
algorithms for the proposed problems.

III. THE PROPOSED ALGORITHMS

The goal of this section is to present algorithmic treatments
for Problem (1) and Problem (2). Specifically, we first prove
that both Problem (1) and Problem (2) are the instances of
the submodular set function maximization with cardinality
constraint problem [6]. In general, these problems are NP-
hard [6]. Therefore, we strive to devise approximate algorithms
for these problems. In the following, we will present several
effective algorithms for Problem (1) and Problem (2) with near-
optimal performance guarantee.

A. Submodularity and greedy algorithms

Before we proceed, let us give a definition of non-
decreasing submodular set function [6].

Definition 3.1: Let V be a finite set, a real valued function
f(S) defined on the subset of V , i.e, S ⊆ V , is called a
non-decreasing submodular set function, if the following two
conditions hold. (1) For any subsets S and T of V such that
S ⊆ T ⊆ V , we have f(S) ≤ f(T). (2) Let σj(S) = f(S ∪
{j}) − f(S) be the marginal gain. Then, for any subsets S
and T of V such that S ⊆ T ⊆ V and j ∈ V \T , we have
σj(S) ≥ σj(T).

By the above definition, we show that the objective
functions of Problem (1) and Problem (2) are submodular.
Specifically, let F1(S) = nL − ∑

u∈V \S hL
uS , and F2(S) =

E[
∑

u∈V XL
uS]. Then, we have the following two theorems.

Theorem 3.2: F1(S) is non-decreasing submodular set
functions with F1(∅) = 0.

Proof: First, it is easy to check that F1(∅) = 0. Second,
we prove that F1(S) is a non-decreasing set function. Let S ⊆
T ⊆ V be two subsets of V . Then, for any node u ∈ V \T ,
we claim that

hL
uT ≤ hL

uS . (9)

We shall prove the above inequality by induction. By defini-
tion, we have h0

uT = h0
uS = 0 and h1

uT = h1
uS = 1. Therefore,

the inequality defined in Eq. (9) holds if L = 0 and L = 1.
Suppose that hL

uT ≤ hL
uS holds given L = α > 1. Below, we

show that the inequality still holds if L = α + 1. By Eq. (4),
we have

hα+1
uS = 1 +

∑
w/∈S puwh

α
wS

= 1 +
∑

w/∈T puwh
α
wS +

∑
w∈T\S puwh

α
wS

≥ 1 +
∑

w/∈T puwh
α
wS ≥ 1 +

∑
w/∈T puwh

α
wT = hα+1

uT ,

where the last inequality holds due to the induction assumption.
Based on Eq. (9), we have

F1(S)− F1(T) =
∑

u∈V \T hL
uT −∑

u∈V \S hL
uS

≤ ∑
u∈V \T (hL

uT − hL
uS) ≤ 0.

Thus, F1(S) is a non-decreasing set function as desired.
Finally, we prove the submodularity property of F 1(S). Let
Tu = T∪{u} and Su = S∪{u}. Let σu(S) = F1(Su)−F1(S)
be the marginal gain. Then, we have

σu(S) =
∑

w∈V \S hL
wS −

∑
w∈V \Su

hL
wSu

and

σu(T) =
∑

w∈V \T hL
wT −

∑
w∈V \Tu

hL
wTu

.

To prove the submodularity of F1(S), we show σu(T) ≤
σu(S) as follows:

σu(S)− σu(T)
= (

∑
w∈V \S hL

wS −∑
w∈V \T hL

wT)

−(
∑

w∈V \Su
hL
wSu

−∑
w∈V \Tu

hL
wTu

)

=
∑

w∈T\S (hL
wS − hL

wT)−
∑

w∈T\S (hL
wSu

−hL
wTu

)

=
∑

w∈T\S (hL
wS − hL

wSu
) ≥ 0.

(10)
Since

∑
w∈T\S hL

wT = 0 and
∑

w∈T\S hL
wTu

= 0 by Eq. (4),
the third equality of the above equation holds. To prove the last
inequality of Eq. (10), we can use a similar induction argument
which is applied to prove Eq. (9). We omit the details for
brevity. Put it all together, we conclude that F1(S) is a non-
decreasing submodular set function with F1(∅) = 0. Therefore,
the theorem is established.

Theorem 3.3: F2(S) is a non-decreasing submodular set
function with F2(∅) = 0.

Proof: First, by definition, XL
uS equals to zero if S = ∅,

which results in F2(∅) = 0. Second, we show the non-
decreasing property of F2(S). Let S ⊆ T ⊆ V be two
subsets of V . By the linearity of expectation, we have F2(S) =∑

w∈V E(XL
wS) =

∑
w∈V pLwS . Let pLwv be the probability

Algorithm 1 The greedy algorithm
Input: A graph G = (V,E), and a parameter k
Output: A set of nodes S

1: S ← ∅;
2: for i = 1 to k do
3: v ← arg max

u∈V \S
{F (S ∪ {u}) − F (S)};

4: S ← S ∪ {v};
5: return S;

that w hits v by an L-length random walk. Then, we have
pLwS = 1−∏

v∈S (1− pLwv). Further, we have

F2(S)− F2(T) =
∑

w∈V (pLwS−pLwT)
=

∑
w∈V ((1−∏

v∈S (1− pLwv))−(1−∏
v∈T (1− pLwv)))

=
∑

w∈V (
∏

v∈T (1− pLwv)−
∏

v∈S (1− pLwv)) ≤ 0.

Therefore, F2(S) is a non-decreasing set function. Finally, we
prove that F2(S) is a submodular set function. Let u ∈ V \T ,
Su = S ∪ {u}, and Tu = T ∪ {u}. Further, we let ρu(S) =
F2(S ∪ {u})− F2(S) be the marginal gain. Then, we have

ρu(S) =
∑

w∈V
(
∏

v∈S
(1− pLwv)−

∏
v∈Su

(1− pLwv))

and

ρu(T) =
∑

w∈V
(
∏

v∈T
(1− pLwv)−

∏
v∈Tu

(1− pLwv)).

In the following, we show that ρu(S) ≥ ρu(T). Specifically,
we have

ρu(S)− ρu(T)
=

∑
w∈V ((

∏
v∈S (1− pLwv)−

∏
v∈T (1− pLwv))

−(
∏

v∈Su
(1− pLwv)−

∏
v∈Tu

(1− pLwv)))
=

∑
w∈V ((1−∏

v∈T\S (1− pLwv))
∏

v∈S (1− pLwv)

−(1−∏
v∈T\S (1− pLwv))

∏
v∈Su

(1− pLwv)

=
∑

w∈V ((1−∏
v∈T\S (1− pLwv))p

L
wu

∏
v∈S (1 − pLwv)

≥ 0.

This completes the proof.
Based on the submodularity of F1 and F2, we present

a greedy algorithm for both Problem (1) and Problem (2)
depicted in Algorithm 1. The greedy algorithm works in k
rounds (line 2-4). In each round, the algorithm selects a node
with the maximum marginal gain (line 3), and adds it into
the answer set S (line 4) which is initialized to be an empty
set (line 1). Note that to solve Problem (1) and Problem (2),
we need to replace the function F in Algorithm 1 with F1

and F2 respectively. By a celebrated result in [6], Algorithm 1
achieves a (1−1/e) approximation factor for Problem (1) and
Problem (2), where e ≈ 2.718 denotes the Euler’s number.

Complexity analysis: The time complexity of Algorithm 1 is
dominated by the time complexity for computing the marginal
gain (line 3). Below, we focus on the analysis of the greedy
algorithm for Problem (1), and similar analysis can be done for
Problem (2). For F1, let σu(S) = F1(S∪{u})−F1(S) be the
marginal gain. Then, σu(S) can be calculated based on Eq. (4).
Note that Eq. (4) immediately implies a dynamic programming
(DP) algorithm for computing hL

uS . Given a set S, the time

complexity for computing hL
uS is O(mL). Therefore, the

time complexity for calculating F1(S) =
∑

u∈V \S (L− hL
uS)

is O(nmL). Since the greedy algorithm needs to find the
node with the maximum marginal gain, it has to evaluate
F1(S ∪ {u}) for every node u in V \S. As a result, the time
complexity of the greedy algorithm is O(kn2mL). We can
use the so-called lazy evaluation strategy [18] to speed up
the greedy algorithm, which could result in several orders
of magnitude speedup as observed in [18]. For the space
complexity, the DP algorithm has to maintain an n×L array for
a given S. To compute the marginal gain, the greedy algorithm
needs to evaluate F1(S ∪ {u}) for every node u in V \S,
thus the space complexity of the greedy algorithm is O(n2L).
Similarly, for Problem (2), the time and space complexity of
the greedy algorithm are O(kn2mL) and O(n2L) respectively.

Approximate marginal gain computation: According to the
above complexity analysis, the DP-based greedy algorithm is
clearly impractical. The most time and space consuming step in
the greedy algorithm is to compute the objective functions and
the corresponding marginal gains. Here we present a sampling-
based algorithm to estimate such quantities efficiently.

Given a set S, to estimate the objective function F1(S)
(F2(S)), the key step is to estimate hL

uS (E[XL
uS]). Below, we

present an unbiased estimator for estimating hL
uS . In particular,

to construct an unbiased estimator for hL
uS , we independently

run R L-length random walks starting from node u. Assume
that there are r such random walks that have hit any one node
in S for the first time at ti1 , · · · , tir hops respectively. Then,
we give an estimator for hL

uS by

ĥL
uS =

∑r

k=1
tik/R + (1− r/R)L. (11)

The following lemma shows that ĥL
uS is unbiased.

Lemma 3.4: ĥL
uS is an unbiased estimator of hL

uS .
Proof: Recall that hL

uS = E[TL
uS]. By Eq. (3), T L

uS denotes
the first time that an L-length random walk starting from u hits
any arbitrary node in S. If such a random walk cannot hit the
nodes in S, then T L

uS = L. To estimate the expectation of
TL
uS , we independently run R L-length random walks starting

from u, and take the average hitting time as the estimator. The
proposed sampling process is equivalent to a simple random
sampling with replacement, thus the estimator is unbiased.

Based on Lemma 3.4, F̂1(S) =
∑

u∈V \S (L− ĥL
uS) is also

an unbiased estimator of F1(S). Similarly, we can construct
an estimator for E[XL

uS] which is given by

Ê[XL
uS] = r/R. (12)

Also, we can show that the estimator Ê[XL
uS] is unbiased.

Lemma 3.5: Ê[XL
uS] is an unbiased estimator of E[XL

uS].
Proof: The proof can be easily obtained by definition,

thus we omit it for brevity.
Likewise, by Lemma 3.5, F̂2(S) =

∑
u∈V Ê[XL

uS] is an
unbiased estimator of F2(S). We remark that in [26], Sarkar
et al. presented a similar unbiased estimator for estimating
the hitting time of the L-length random walk between two
nodes. Our estimator (ĥL

uS) is to estimate the generalized

hitting time of the L-length random walk between a source
node and a targeted set. In this sense, the proposed estimator
is more general than the estimator presented in [26]. Next, we
apply Hoeffding’s inequality [27] to bound the sample size R.
Specifically, we have the following two lemmas.

Lemma 3.6: Given a set S, for two small constants ε and
δ, if R ≥ 1

2ε2 log
n−|S|

δ , then Pr[|F̂1(S) − F1(S)| ≥ ε(n −
|S|)L] ≤ δ.

Proof: First, we have

Pr[|F̂1(S)− F1(S)| ≥ ε(n− |S|)L]
≤ Pr[

∑
u∈V/S |ĥuS − huS | ≥ ε(n− |S|)L],

as |F̂1(S) − F1(S)| ≥ ε(n − |S|)L implies∑
u∈V/S |ĥuS − huS | ≥ ε(n− |S|)L. Then, by the union

bound, we have

Pr[
∑

u∈V/S

|ĥuS − huS| ≥ ε(n− |S|)L]
≤∑

u∈V/S Pr[|ĥuS − huS | ≥ εL].

Since 0 ≤ ĥuS ≤ L (Lemma 2.1), we can apply Hoeffding’s
inequality [27] to bound the sample size R. Specifically, we
have

Pr[|ĥuS − huS | ≥ εL] ≤ exp(−2ε2R).

Based on this, the following inequality immediately holds

Pr[|F̂1(S)−F1(S)| ≥ ε(n− |S|)L] ≤ (n− |S|) exp(−2ε2R).

Let (n − |S|) exp(−2ε2R) ≤ δ, then we can get R ≥
1

2ε2 log
n−|S|

δ , which completes the proof.
Lemma 3.7: Given a set S, for two small constants ε and

δ, if R ≥ 1
2ε2 log

n
δ , then Pr[|F̂2(S)− F2(S)| ≥ εn] ≤ δ.

Proof: The proof is similar to the proof of Lemma 3.6,
thus we omit for brevity.

Based on the above analysis, we present a sampling-
based greedy algorithm where the marginal gain σu(S) =
F1(S ∪ {u}) − F1(S) (or ρu(S) = F2(S ∪ {u}) − F2(S))
can be estimated using the estimators F̂1(S) and F̂1(S ∪ {u})
(F̂2(S) and F̂2(S ∪ {u})). Note that each estimator (F̂1(S) or
F̂2(S)) has to run nR independent L-length random walks.
Due to space limit, the detailed description of this algorithm
is omitted, and it can be found in our technical report [28].
One can easily derive that the time complexity of the sampling-
based greedy algorithm is O(kn2RL). The reason is described
as follows. First, running an L-length random walk takes O(L)
time complexity. Therefore, each marginal gain evaluation
requires O(nRL) time complexity. Second, the algorithm has
to select the node with maximal marginal gain, thus the time
complexity taken in each round is O(n2RL). There are k
rounds in total, thus the time complexity of this algorithm
is O(kn2RL). The space complexity of this algorithm is
O(m + n), which is significantly better than the DP-based
greedy algorithm.

By Lemma 3.6 and Lemma 3.7, the sampling algorithm
can get a good approximation of the marginal gain. As a
consequence, the approximation guarantee of the sampling-
based greedy algorithm can be preserved. Indeed, by a similar

analysis presented in [17], the sampling-based greedy algo-
rithm achieves a 1 − 1/e − ε approximation factor through
setting an appropriate parameter R.

B. Approximate greedy algorithm

Recall that the sampling-based greedy algorithm has to run
O(kn2R) L-length random walks. Can we reduce the sample
complexity of the sampling-based greedy algorithm? In this
subsection, we give an algorithm that only runs O(nR) L-
length random walks in total, and it also preserves the 1 −
1/e − ε approximation factor. For convenience, we call this
algorithm the approximate greedy algorithm. Below, we mainly
focus on describing the algorithm for Problem (1), and similar
descriptions can be used for Problem (2) (we have added some
remarks for Problem (2) in Algorithms 2, 3, 4, and 5).

The key idea is described as follows. First, for each node,
the algorithm independently runs R L-length random walks.
Then, the algorithm materializes such samples (An L-length
random walk is a sample, there are nR samples in total),
and applies them to estimate the marginal gain σu(S) for
any given node u and a given set S. Here the challenge
is how to estimate σu(S) efficiently using such samples,
because S changes in each round of the greedy algorithm. To
overcome this challenge, we present an inverted list structure
to index the samples. Specifically, we build R inverted lists,
and each inverted list includes n sublists. For each node u,
a sublist indexes all the other nodes that hit u through an
L-length random walk. Here the entry of the sublist is an
object that includes two parts: a node ID (id) and a weight
(weight), denoting a node id hits u at weight-th step of an
L-length random walk. Algorithm 2 depicts the inverted index
construction algorithm. In Algorithm 2, the R inverted lists,
denoted by I[1 : R][1 : n], are organized as a two-dimensional
list array, in which I[i][v] indexes all the nodes that hit v by
the i-th L-length random walk. First, the algorithm initializes
I[1 : R][1 : n] by an empty array (line 1). Then, for each
node w in V , the algorithm runs R L-length random walks
(line 2-14). Let us consider the i-th L-length random walk
starting at node w. If w hits a node v, the algorithm creates
an object < w,weight >, where weight denotes that w hits
v at weight-step (line 11-12). Then, the algorithm adds it into
I[i][v] (line 13). Note that for the repeated nodes in an L-length
random walk, we only need to index one node and record the
weight at the first visiting time according to the definition of
hitting time. To remove such repeated nodes in an L-length
random walk, the algorithm maintains a visited[1 : n] array
(line 4, 6 and 9-10).

Given the inverted lists I[1 : R][1 : n], how to estimate
the marginal gain for any node u and a given set S? Here
we tackle this issue by maintaining a two-dimensional array
D[1 : R][1 : n]. Given a set S, let D[i][u] be an estimator
of the hitting time hL

uS (or E[XL
uS] for Problem (2)) based

on the i-th L-length random walk. Let Su = S ∪ {u}, and
σu(S) = F1(Su) − F1(S) be the marginal gain. Then, we can
derive that σu(S) =

∑
w∈V \Su

(hL
wS − hL

wSu
) + hL

uS −L. Recall
that in each round of the greedy algorithm, we need to find

Algorithm 2 Invert Index(G, L, R)
Input: A graph G = (V,E), two parameters L and R
Output: An inverted index I [1 : R][1 : n]

1: Initialize an inverted list I [1 : R][1 : n]← null;
2: for each node w ∈ V do
3: for i = 1 : R do
4: Initialize visited[1 : n]← 0;
5: u← w;
6: visited[u]← 1;
7: for j = 1 : L do
8: Randomly select a neighbor of u, denoted by v;
9: if visited[v] = 0 then

10: visited[v]← 1;
11: Object.id ← w;
12: Object.weight← j; /*w hits v at j-th step*/

/*Object.weight← 1; for Problem (2)*/;
13: I [i][v].push back(Object);
14: u← v;
15: return I [1 : R][1 : n];

the node with the maximum marginal gain. Therefore, we can
estimate the marginal gain σu by

∑
w∈V \Su

(hL
wS − hL

wSu
)+hL

uS

for each node u, because “−L” does not affect the results.
Algorithm 3 describes an algorithm for estimating σu. Let
us consider the i-th L-length random walk. First, σu is
initialized by 0. Then, the algorithm adds D[i][u], which is
an estimator of hL

uS , to σu (line 3). And then, the algorithm
estimates

∑
w∈V \Su

(hL
wS − hL

wSu
) and adds it to σu, which

is implemented in line 4-7. By definition, if a node v in
V \Su does not hit u, then we have hL

vS = hL
vSu

. Thus, the
algorithm only needs to consider the nodes that have hit u
(line 4) which is indexed in I[i][u]. If hL

vu < hL
vS , then the

algorithm adds hL
vS − hL

vSu
= hL

vS − hL
vu to σu. Otherwise,

we have hL
vS = hL

vSu
. Note that by definition, hL

vu can be
estimated by the weight associated with v which is indexed
in I[i][u], and hL

vS can be estimated by D[i][v], and thus
hL
vS − hL

vu can be estimated by D[i][v] minus the weight
associated with v (line 7). Therefore, line 3-7 of Algorithm 3
are used to estimate σu based on the i-th L-length random
walk. Finally, Algorithm 3 takes an average over all the R
estimations (line 10).

Algorithm 3 can be used to estimate the marginal gain
for every node given a set S. In the greedy algorithm, after
one round, the size of S increases by 1. Hence, we need
to dynamically maintain the array D[1 : R][1 : n] when
S is changed. Algorithm 4 depicts an algorithm to update
D[1 : R][1 : n] given that S includes at least one node.
As usual, let us consider the i-th L-length random walk. By
definition, for a node v, if hL

vu < hL
vS , then we need to update

D[i][v]. Otherwise, we have hL
vS = hL

vSu
, thus no need to

update D[i][v]. In addition, for a node v that does not hit u,
we do not need to update D[i][v] as hL

vS = hL
vSu

by definition.
In Algorithm 4, the algorithm first sets D[i][u] to 0 (line 2),
because hL

uSu
= 0 (u is in Su). Then, the algorithm updates

D[i][v] for the node v that has hit u by the i-th L-length
random walk (line 3-6).

Equipped with Algorithm 2, Algorithm 3, and Algorithm 4,

Algorithm 3 Approx Gain(I[1 : R][1 : n], D[1 : R][1 : n], u,
R)
Input: The inverted index I [1 : R][1 : n], the array

D[1 : R][1 : n], a node u and parameter R
Output: Approximate marginal gain σu

1: Initialize σu ← 0;
2: for i = 1 : R do
3: σu ← σu +D[i][u];

/*σu ← σu + 1−D[i][u]; for Problem (2)*/
4: while Object← I [i][u].pop() do
5: v ← Object.id;
6: if Object.weight < D[i][v] then
7: σu ← σu +D[i][v] −Object.weight;

/*for Problem (2), use line 8-9 to replace line 6-7*/
8: if Object.weight > D[i][v] then
9: σu ← σu +Object.weight−D[i][v];

10: σu ← σu/R;
11: return σu;

Algorithm 4 Update(I[1 : R][1 : n], D[1 : R][1 : n], u, R)
Input: The inverted index I [1 : R][1 : n], the array

D[1 : R][1 : n], a node u and parameter R
Output: The updated array D[1 : R][1 : n]

1: for i = 1 : R do
2: D[i][u]← 0; /*D[i][u] ← 1; for Problem (2)*/
3: while Object← I [i][u].pop() do
4: v ← Object.id;
5: if Object.weight < D[i][v] then
6: D[i][v]← Object.weight;

/*for Problem (2), use line 7-8 to replace line 5-6)*/
7: if Object.weight > D[i][v] then
8: D[i][v]← Object.weight;

we present the approximate greedy algorithm in Algorithm 5.
First, Algorithm 5 builds R inverted lists (line 1). Second, the
algorithm initializes the answer set S to an empty set (line 2),
and sets the value of each entry in D[1 : R][1 : n] to L (line 3),
because hL

uS = L given that S = ∅. Third, the algorithm works
in k rounds (line 4-7). In each round, the algorithm invokes
Algorithm 3 to estimate the marginal gain σu(S), and selects
the node v with the maximum σu(S). Then, the algorithm
adds v into the answer set S. After that, the algorithm invokes
Algorithm 4 to update D[1 : R][1 : n]. The following example
illustrates how the Algorithm 5 works.

Example 3.8: Let us re-consider the example graph shown
in Fig. 1. For simplicity, we set R = 1, L = 2, and
k = 2. Suppose that the 2-length random walks for each
node generated by the algorithm are described as follows:
(v1, v2, v3), (v2, v3, v5), (v3, v2, v5), (v4, v7, v5), (v5, v2, v6),
(v6, v7, v5), (v7, v5, v7), and (v8, v7, v4). Then, the inverted
index constructed by Algorithm 2 (I[1][1 : 8]) is illustrated
Table I. Note that in (v7, v5, v7), v7 is a repeated node, thus
the second v7 will not be inserted into the inverted list by
Algorithm 2. After building the inverted index, Algorithm 5
initializes S to an empty set, and set all the elements of
D[1][1 : 8] to 2. Then, in the first round, the algorithm
invokes Algorithm 3 to estimate the marginal gain σu(∅) for

Algorithm 5 The approximate greedy algorithm
Input: A graph G = (V,E), and parameters k, R
Output: A set of nodes S

1: I [1 : R][1 : n]←Invert Index(G, L, R);
2: S ← ∅;
3: Initialize D[1 : R][1 : n]← L;

/*D[1 : R][1 : n]← 0; for Problem (2)*/
4: for i = 1 to k do
5: v ← arg max

u∈V \S
Approx Gain(I [1 : R][1 : n], D[1 : R][1 :

n], u,R);
6: S ← S ∪ {v};
7: Update(I [1 : R][1 : n], D[1 : R][1 : n], v, R);
8: return S;

TABLE I
INVERTED INDEX

v1:
v2: < v1, 1 >, < v3, 1 >, < v5, 1 >
v3: < v1, 2 >, < v2, 1 >
v4: < v8, 2 >
v5: < v2, 2 >, < v3, 2 >, < v4, 2 >, < v6, 2 >, < v7, 1 >
v6: < v5, 2 >
v7: < v4, 1 >, < v6, 1 >, < v8, 1 >
v8:

each node. After this step, we can get that σv1(∅) = 2,
σv2(∅) = 5, σv3 (∅) = 3, σv4(∅) = 2, σv5(∅) = 3, σv6 (∅) = 2,
σv7(∅) = 5, and σv8(∅) = 2. For instance, for node v2,
there are three elements in the inverted list I[1][2]. Since
the weights of v1, v3, and v5 (all of them equal to 1) are
smaller than D[1][1], D[1][3], and D[1][5] (all of them equal
to 2) respectively, thus σv2(∅) = D[1][2] + 3 = 5 as desired.
Similar analysis can be used for other nodes. Clearly, v2 and
v7 achieve the maximum marginal gain. The algorithm breaks
ties randomly. Assume that in this round, the algorithm selects
v2 and adds it into S. Then, the algorithm invokes Algorithm 4
(Update(I[1][1 : 8], D[1][1 : 8], v2, 1)) to update D[1][1 : 8].
After this step, only D[1][2], D[1][1], D[1][3], and D[1][5] need
to be updated, and they are re-set to 0, 1, 1, and 1 respectively.
Similar arguments can be used for analyzing the second round.
Here we only report the result, and omit the details for brevity.
In the second round, the algorithm adds v7 into the answer set.
Therefore, the algorithm outputs {v2, v7} as the targeted nodes.

Complexity analysis: We analyze the time and space com-
plexity of Algorithm 5 as follows. First, to build the inverted
index (line 1), Algorithm 2 takes O(RLn) time complexity.
Second, to estimate the marginal gain for every node, the
algorithm needs to invoke Algorithm 3 O(n) times. We can
derive that the time complexity of this step (line 5) is O(nRL),
because the algorithm only needs to access the entire inverted
index once and the size of the inverted index is bounded by
O(nRL). Third, to update D[1 : R][1 : n], Algorithm 4 takes
at most O(Rn) time. Put it all together, the time complexity
of Algorithm 5 is O(kRLn), which is linear w.r.t. the graph
size (R, k, and L are constants). For the space complexity,
the algorithm needs to maintain two arrays: the inverted index
I[1 : R][1 : n] and the array D[1 : R][1 : n]. Clearly,
I[1 : R][1 : n] and D[1 : R][1 : n] are bounded by O(RLn)

and O(Rn) respectively. Therefore, the space complexity of
Algorithm 5 is O(nRL+m).

Note that in Algorithm 5, each marginal gain is estimated
by the same R L-length random walks. Since the L-length
random walks are independent of one another, the estimator
is able to achieve high accuracy by setting an appropriate R.
As a result, the approximation factor of Algorithm 5 is very
close to 1− 1/e− ε. Indeed, in the experiments, we find that
the effectiveness of Algorithm 5 is comparable with the DP-
based greedy algorithm even when R is a small value (e.g.,
R = 100).

IV. EXPERIMENTS

In this section, we conduct extensive experiments over
both synthetic and real-world graphs to evaluate the proposed
algorithm. Below, we first describe the experimental setup and
then report our results.

Different algorithms: To the best of our knowledge, we are
the first group to study the random-walk domination problems.
In the literature, no algorithm has been proposed to solve
these problems. Therefore, to evaluate the proposed algorithms,
we rely on comparing them with the following two baseline
algorithms. The first baseline algorithm is the degree-based
algorithm. Intuitively, the high-degree nodes are more easily
reached by the other nodes. Hence, to maximize the expected
number of reached nodes, a reasonable baseline algorithm is to
select the top-k high-degree nodes as the targeted nodes. For
convenience, we refer to this baseline algorithm as the Degree
algorithm. The second baseline is the traditional dominating-
set-based algorithm [7]. A dominating set is a subset of nodes
D ⊂ V such that every node in V is either in D or a neighbor
of some nodes in D [7]. By this definition, every node can
only dominate its neighbors. In our problems, since we have
a cardinality constraint, i.e., |S| ≤ k, we cannot select the
entire dominating set. Instead, we turn to select k nodes such
that they can dominate as many nodes as possible. Note that
here the concept of domination is based on the definition of
traditional dominating set. Specifically, let S be the set of
targeted nodes. Initially, S is an empty set. The algorithm
works in k rounds. In each round, the algorithm selects a node
v such that v = argmaxu∈V/S |N({u})−N(S)|, where N(S)
denotes the set of immediate neighbors of nodes in S. Then,
the algorithm adds v into the set S, and goes to the next round.
We call this algorithm the Dominate algorithm.

The first proposed algorithm is the DP-based greedy al-
gorithm, in which the marginal gain is calculated by the DP
algorithm. The second proposed algorithm is the approximate
greedy algorithm, i.e., Algorithm 5. Both of them are used to
solve Problem (1) (Eq. (6)) and Problem (2) (Eq. (7)). Here
we do not report the results of the sampling-based greedy
algorithm because the approximate greedy algorithm is more
efficient than such an algorithm. For convenience, we refer
to the first algorithm for solving Problem (1) and Problem
(2) as DPF1 and DPF2 respectively. Similarly, we call the
second algorithm for solving Problem (1) and Problem (2) as
ApproxF1 and ApproxF2 respectively.

TABLE II
SUMMARY OF THE DATASETS

Name # of nodes # of edges
CAGrQc 5,242 28,968
CAHepPh 12,008 236,978
Brightkite 58,228 428,156
Epinions 75,872 396,026

Evaluation metrics: Two metrics are used to evaluate the
effectiveness of different algorithms. The first metric is
the average hitting time which is defined as M1(S) =∑

u∈V \S hL
uS/|V \S|, where S denotes the set of selected

nodes by an algorithm. This metric inversely measures the
effectiveness of the algorithm. In other words, the smaller the
M1(S) is, the more effective the algorithm is. The second
metric is the expected number of nodes that hit a node in
S via an L-length random walk. The formula of the second
metric is given by M2(S) =

∑
u∈V E[XL

uS]. The larger M2(S)
is, the more effective the algorithm is. For convenience, we
refer to the first metric and the second metric as AHT and
EHN respectively. Note that to compute these metrics, we use
the sampling algorithm described in Section III-A and set the
sample size R = 500. To evaluate the efficiency of different
algorithms, we record the running time, which is measured by
the wall-clock time.

Datasets and experimental environment: We use four
real-world datasets in the experiments: CAGrQc, CAHepPh,
Brightkite, and Epinions. The CAGrQc and CAHepPh datasets
are co-authorship networks, the Brightkite is a location-based
social network dataset, and the Epinions is a trust social
network dataset. We download these datasets from Stanford
network data collections [29]. The detailed statistic information
of the datasets is shown in Table II. We conduct all the
experiments on a Windows XP PC with 2xQuad-Core Intel
Xeon 2.66 GHz CPU, and 4GB memory. All the algorithms
are implemented in C++.

A. Experimental Results

Performance of the approximate greedy algorithms: Here
we compare the effectiveness of the approximate greedy algo-
rithms (ApproxF1 and ApproxF2) with those of the DP-based
greedy algorithm (DPF1 and DPF2). Due to the expensive time
and space complexity of the DPF1 and DPF2 algorithms, these
two algorithms can only work well on very small datasets.
To this end, we generate a small synthetic graph with 1000
nodes and 9956 edges based on a commonly-used power-
law random graph model [30]. We set the parameter k to
30 which denotes the number of selected nodes, and set the
parameter L in the L-length random walk model to 5 and 10
respectively. Similar results can be observed for other values
of k and L. The results are shown in Fig. 2 and Fig. 3.
Specifically, Fig. 2 depicts the comparison of effectiveness
of DPF1 and ApproxF1 algorithms. The black dash line in
Fig. 2 describes the effectiveness of the DPF1 algorithm, while
the red solid curve depicts the effectiveness of the ApproxF1
algorithm as a function of the parameter R. As can be seen

50 100 150 200 250
562
564
566
568
570
572

R

E
H

N

(c) L=5

50 100 150 200 250

790

795

800

R

E
H

N

(d) L=10

50 100 150 200 250

3.6

3.62

3.64

R

A
H

T
(a) L=5

50 100 150 200 250
5.58

5.6

5.62

5.64

R

A
H

T

(b) L=10

DPF1
ApproxF1

Fig. 2. Comparison of effectiveness of DPF1 and ApproxF1

50 100 150 200 250

562
564
566
568
570
572

R

E
H

N

(c) L=5

50 100 150 200 250

792
794
796
798
800

R

E
H

N

(d) L=10

50 100 150 200 250

3.6

3.62

3.64

R

A
H

T

(a) L=5

50 100 150 200 250
5.58

5.6

5.62

5.64

5.66

R

A
H

T

(b) L=10

DPF2
ApproxF2

Fig. 3. Comparison of effectiveness of DPF2 and ApproxF2

in Fig. 2, the ApproxF1 algorithm is very accurate when the
number of samples is greater than or equal to 50. For example,
in Fig. 2(a), the greatest difference of AHT between DPF1
and ApproxF1 algorithms is around 0.01, which is achieved
at R = 50. Moreover, when R = 100, the result of the
ApproxF1 algorithm matches the result of the DPF1 algorithm.
In Fig. 2(c), we can see that the expected number nodes that
hit the selected nodes calculated by the ApproxF1 algorithm
is very close to the expected number of nodes computed
by the DPF1 algorithm. The maximal difference of EHN
between DPF1 and ApproxF1 algorithms is around 1.5, which
is achieved at R = 200.

Fig. 3 illustrates the comparison of effectiveness of DPF2
and ApproxF2 algorithms. Similarly, from Fig. 3, we can
observe that the effectiveness of the ApproxF2 algorithm is
very close to that of the DPF2 algorithm. In Fig. 3(a), for
instance, the maximal difference of AHT between the DPF2
and ApproxF2 algorithms is smaller than 0.01 (obtained at
R = 100). Hence, for both AHT and EHN metrics, the
approximate greedy algorithms work very well with a small
R value. These results are consistent with the analysis in
Section III-B.

Effectiveness of different algorithms: As indicated in the
previous experiment, under both AHT and EHN metrics, there
is no significant difference between the ApproxF1 (ApproxF2)
algorithm and the DPF1 (DPF2) algorithm. Furthermore, the
former algorithms have much lower time and space complexity
than the latter algorithms. Consequently, in the following ex-
periments, we only report the results obtained by the ApproxF1

20 40 60 80 100

5.2

5.4

5.6

5.8

k

A
H

T

(a) CAGrQc

20 40 60 80 100

5.5

5.6

5.7

5.8

k

A
H

T

(b) CAHepPh

20 40 60 80 100

5.5

5.6

5.7

k

A
H

T

(c) Brightkite

20 40 60 80 100
3.5

3.6

3.7

3.8

k

A
H

T

(d) Epinions

Degree

Dominate

ApproxF1

ApproxF2

Fig. 4. Comparison of AHT of different algorithms

20 40 60 80 100

500

1000

1500

k

E
H

N

(a) CAGrQc

20 40 60 80 100
1000

2000

3000

k

E
H

N

(b) CAHepPh

20 40 60 80 100

0.8

1

1.2

1.4

x 10
4

k

E
H

N

(c) Brightkite

20 40 60 80 100

1
1.2
1.4
1.6
1.8

x 10
4

k

E
H

N

(d) Epinions

Degree

Dominate

ApproxF1

ApproxF2

Fig. 5. Comparison of EHN of different algorithms

and ApproxF2 algorithms. For these algorithms, we set the
parameter R to 100 in all the following experiments without
any specific statements, because R = 100 is sufficient to ensure
good accuracy as indicated in the previous experiment. For all
the algorithms, we set the parameter L to 6. Similar results can
be observed for other L values. Fig. 4 and Fig. 5 describe the
results of different algorithms over four real-world datasets
under AHT and EHN metrics respectively. From Fig. 4, we
can see that both the ApproxF1 and ApproxF2 algorithms are
substantially better than the two baselines in all the datasets
used. As desired, for all the algorithms, the AHT decreases as k
increases. In addition, we can see that the ApproxF1 algorithm
slightly outperforms the ApproxF2 algorithm, because the Ap-
proxF1 algorithm directly optimizes the AHT metric. Also, we
can observe that the Dominate algorithm is slightly better than
the Degree algorithm in CAHepPh, Brightkite, and Epinions
datasets. In CAGrQc datasets, however, the Degree algorithm
performs poorly, and the Dominate algorithm significantly
outperforms the Degree algorithm. Similarly, as can be seen in
Fig. 5, the ApproxF1 and ApproxF2 algorithms substantially
outperform the baselines over all the datasets under the EHN
metric. Moreover, we can see that the ApproxF2 algorithm
is slightly better than the ApproxF1 algorithm, because the
ApproxF2 algorithm directly maximizes the EHN metric. Note
that, under both AHT and EHN metrics, the gap between the
curves of the approximate greedy algorithms and those of the
two baselines increases with increasing k. The rationale is
that the approximate greedy algorithms are near-optimal which
achieve 1 − 1/e − ε approximation factor, and such approx-
imation factor is independent of the parameter k. The two

20 40 60 80 100

30

40

50

60

k

R
u

n
n

in
g

 t
im

e
(s

)
(a) Running time vs. k (L=6)

2 4 6 8 10

20

40

60

80

L

R
u

n
n

in
g

 t
im

e
(s

)

(b) Running time vs. L (k=100)

Degree
Dominate
ApproxF1
ApproxF2

Fig. 6. Running time of different algorithms (Epinions)

2 4 6 8 10

x 10
5

200
400
600
800

1000
1200

Number of nodes

R
u

n
n

in
g

 t
im

e
(s

)

2 4 6 8 10

x 10
6

200
400
600
800

1000
1200

Number of edges

R
u

n
n

in
g

 t
im

e
(s

)

ApproxF1
ApproxF2

Fig. 7. Scalability testing

baselines, however, are without any performance guarantee,
thus the effectiveness of these two algorithms would decrease
as k increases. These results are consistent with our theoretical
analysis in Section III.

Efficiency of different algorithms: In this experiment, we
evaluate the efficiency of different algorithms. Fig. 6 shows
the comparison of the running time of different algorithms
over the Epinions dataset. Similar results can be obtained in
other datasets. In particular, Fig. 6(a) depicts the running time
of different algorithms as a function of the parameter k. Here
the parameter L is set to 6. We are able to observe that the
running time of the ApproxF1 and ApproxF2 algorithms are
around 2.5 times longer than the running time of the Degree
and Dominate algorithms. Fig. 6(b) illustrates the running time
of different algorithms as a function of the parameter L, where
we set the parameter k to 100. As can be observed in Fig. 6(b),
the running time of the ApproxF1 and ApproxF2 algorithms
are longer than that of the Degree and Dominate algorithms
by 2.7 times at most. For example, when L = 10, the running
time of the ApproxF1 is 99 seconds, while the running time
of the Degree algorithm is 37 seconds. These results indicate
that the running time of the approximate greedy algorithms
is only a small constant times longer than that of the Degree
algorithm, which are consistent with the complexity analysis
in Section III-B.

Scalability testing: Here we evaluate the scalability of the
ApproxF1 and ApproxF2 algorithms. To this end, we generate
ten large synthetic graphs according to a widely-used power-
law random graph model [30]. More specifically, we generate
ten graphs G1, · · · , G10 such that Gi has i×0.1 million nodes
and i million edges for i = 1, · · · , 10. Fig. 7 shows the results
of the ApproxF1 and ApproxF2 algorithms w.r.t. the number of
nodes (left panel) and w.r.t. the number of edges (right panel).
Here we set the parameter L = 6 and k = 100. Similar results
can be observed for other values of L and k. From Fig. 7, we
find that both the ApproxF1 and ApproxF2 algorithms scale
linearly w.r.t. both the number of nodes and the number of
edges, which is consistent with the linear time complexity
(w.r.t. the graph size) of the algorithm.

2 4 6 8 10

500

1000

1500

L

E
H

N

(b) CAGrQc

2 4 6 8 10
2

4

6

8

L

A
H

T

(a) CAGrQc

Degree

Dominate

ApproxF1

ApproxF2

2 4 6 8 10

1000

2000

3000

L

E
H

N

(d) CAHepPh

2 4 6 8 10
2

4

6

8

L

A
H

T

(c) CAHepPh

Fig. 8. Effect of parameter L

Effect of parameter L: Here we study the effect of parameter
L. Fig. 8 reports the results in CAGrQc and CAHepPh datasets
given k = 60. Similar results can be observed in other datasets
and other values of k as well. From Fig. 8(a-d), we can see
that both the AHT and EHN by different algorithms increase as
L increases. Recall that the hitting time is bounded by L, and
the hitting time of a node that cannot hit the targeted nodes
is set to L. Therefore, the average hitting time increases if
L increases. Clearly, with L increasing, the number of nodes
that can hit the targeted nodes increases, thereby the EHN of
different algorithms increase. In addition, we find that the gap
between the curves of the ApproxF1 and ApproxF2 algorithms
and the curves of the baselines increases as L increases, which
suggests that the ApproxF1 and ApproxF2 algorithms perform
very well for large L values.

V. CONCLUSIONS

In this paper, we introduce and formulate two types
of random-walk domination problems in graphs motivated
by a number of applications such as item-placement in
social networks, resource-placement in P2P networks, and
advertisement-placement in advertisement networks. We show
that these problems are the instances of submodular set func-
tion maximization with cardinality constraint problem. Based
on this, we propose a dynamic programming (DP) based
greedy algorithm with 1 − 1/e approximation factor to solve
them effectively. The DP-based greedy algorithm, however,
is not very efficient because of the expensive marginal gain
evaluation. To further accelerate the greedy algorithm, we
present an approximate greedy algorithm with linear time
complexity w.r.t. the graph size. We show that the approxi-
mate greedy algorithm is also with near-optimal performance
guarantee. Extensive experiments are conducted to evaluate the
proposed algorithms. The results demonstrate the effectiveness,
efficiency, and scalability of the proposed algorithms.

There are several future directions which deserve further
investigation. First, recall that both the objective functions of
Problem (1) and Problem (2) are submodular. An interesting
problem is to combine these two objective functions (e.g., by a
positive weight, it is still submodular) and then optimize both
the total hitting time and the expected number of nodes that
hit the targeted set simultaneously. Second, Problem (2) is to
maximize the expected number of nodes that are dominated by

the targeted set. It would be interesting to extend this problem
to maximize the expected number of edges that are traversed
by the L-length random walk starting from every node to the
targeted set. Finally, a related problem of Problem (2) is that
given a parameter α ∈ [0, 1], the goal is to find the minimum
number of targeted nodes such that they can dominate at least
αn number of nodes in expectation. It would also be interesting
to devise efficient algorithms for this issue.

APPENDIX

Proof of Theorem 2.2: By definition, we have the following
facts.

Fact 1: If 0 < i < L, we have Pr[T L
uv = i] =∑

w∈V puw Pr[TL
wv = i− 1], and if i = L, Pr[T L

uv = i] =∑
w∈V puw Pr[TL

wv ≥ i− 1] holds.

Fact 2: If 0 < i < L−1, we have Pr[T L−1
uv = i] = Pr[TL

uv =
i], and if i = L − 1, we have Pr[T L−1

uv = i] = Pr[TL
uv =

i] + Pr[TL
uv = L].

Equipped with the above two facts, we can prove the
theorem as follows. Clearly, if u = v, then T L

uv = 0, and
thereby hL

uv = 0. If u
= v, by definition, we have

hL
uv = E[TL

uv] =
∑L

i=1 iPr[T
L
uv = i]

=
∑L−1

i=1 iPr[TL
uv = i] + LPr[TL

uv = L]

=
∑L−1

i=1 i
∑

w∈V puw Pr[TL
wv = i− 1]

+L
∑

w∈V puw Pr[TL
wv ≥ L− 1]

=
∑L

i=1 i
∑

w∈V puw Pr[TL
wv = i− 1]

+L
∑

w∈V puw Pr[TL
wv = L],

(13)
where the third equation holds due to Fact 1. Then, we can
further decompose Eq. (13) as follows.

hL
uv =

∑L
i=1 (i− 1)

∑
w∈V puw Pr[TL

wv = i− 1]

+
∑L

i=1

∑
w∈V puw Pr[TL

wv = i− 1]
+
∑

w∈V puw Pr[TL
wv = L]

+(L− 1)
∑

w∈V puw Pr[TL
wv = L]

=
∑L

i=1 (i− 1)
∑

w∈V puw Pr[TL
wv = i− 1]

+(L− 1)
∑

w∈V puw Pr[TL
wv = L] + 1,

(14)

where the second equality holds due to
∑L

i=1 Pr[T
L
wv = i] = 1

and
∑

w∈V puw = 1. Based on Eq. (14) and Fact 2, we have

hL
uv =

∑L−1
i=1 i

∑
w∈V puw Pr[TL

wv = i]
+(L− 1)

∑
w∈V puw Pr[TL

wv = L] + 1

=
∑L−2

i=1 i
∑

w∈V puw Pr[TL
wv = i]

+(L− 1)
∑

w∈V puw(Pr[T
L
wv = L− 1] + Pr[TL

wv = L]) + 1

=
∑L−2

i=1 i
∑

w∈V puw Pr[TL−1
wv = i]

+(L− 1)
∑

w∈V puw(Pr[T
L−1
wv = L− 1]) + 1 {By Fact 2}

=
∑L−1

i=1 i
∑

w∈V puw Pr[TL−1
wv = i] + 1

= 1 +
∑

w∈V puwh
L−1
wv .

(15)
This completes the proof.

ACKNOWLEDGEMENTS

The work was supported in part by (i) grants GRF
418512, 411211, and 411310 from HKRGC, (ii) NSFC
project 61170076 from China, and (iii) China-863 project
2012AA01A309.

REFERENCES

[1] K. Lerman and L. Jones, “Social browsing on flickr,” in ICWSM, 2007.
[2] K. Lerman, “Social browsing & information filtering in social media,”

CoRR, vol. abs/0710.5697, 2007.
[3] M. R. Morris, J. Teevan, and K. Panovich, “A comparison of information

seeking using search engines and social networks,” in ICWSM, 2010.
[4] X. Si, E. Y. Chang, Z. Gyöngyi, and M. Sun, “Confucius and its

intelligent disciples: Integrating social with search,” PVLDB, vol. 3,
no. 2, 2010.

[5] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer
networks: Algorithms and evaluation,” Perform. Eval., vol. 63, no. 3, pp.
241–263, 2006.

[6] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions-i,” Mathematical
Programming, vol. 14, pp. 265–294, 1978.

[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of
domination in graphs. MARCEL DEKKER, INC, 1998.

[8] ——, Domination in graphs: advanced topics. MARCEL DEKKER,
INC, 1998.

[9] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM,
vol. 45, no. 4, 1998.

[10] Y. Wu and Y. Li, “Construction algorithms for k-connected m-dominating
sets in wireless sensor networks,” in MobiHoc, 2008.

[11] I. Stojmenovic, M. Seddigh, and J. D. Zunic, “Dominating sets and
neighbor elimination-based broadcasting algorithms in wireless net-
works,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 1, pp. 14–25,
2002.

[12] J. Wu, M. Cardei, F. Dai, and S. Yang, “Extended dominating set and
its applications in ad hoc networks using cooperative communication,”
IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 8, pp. 851–864, 2006.

[13] M. Couture, M. Barbeau, P. Bose, and E. Kranakis, “Incremental
construction of k-dominating sets in wireless sensor networks,” Ad Hoc
& Sensor Wireless Networks, vol. 5, no. 1-2, pp. 47–68, 2008.

[14] F. Kuhn and R. Wattenhofer, “Constant-time distributed dominating set
approximation,” in PODC, 2003.

[15] E. Sampathkumar and H. Walikar, “The connected domination number
of a graph,” J. Math. Phys. Sci, vol. 13, no. 6, pp. 607–613, 1979.

[16] S. Guha and S. Khuller, “Approximation algorithms for connected
dominating sets,” Algorithmica, vol. 20, no. 4, pp. 374–387, 1998.

[17] D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003.

[18] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, and
N. S. Glance, “Cost-effective outbreak detection in networks,” in KDD,
2007.

[19] A. Krause, A. P. Singh, and C. Guestrin, “Near-optimal sensor place-
ments in gaussian processes: Theory, efficient algorithms and empirical
studies,” Journal of Machine Learning Research, vol. 9, pp. 235–284,
2008.

[20] H. Lin and J. Bilmes, “A class of submodular functions for document
summarization,” in ACL, 2011.

[21] A. Krause and E. Horvitz, “A utility-theoretic approach to privacy and
personalization,” in AAAI, 2008, pp. 1181–1188.

[22] R.-H. Li and J. X. Yu, “Scalable diversified ranking on large graphs,” in
ICDM, 2011.

[23] ——, “Scalable diversified ranking on large graphs,” in IEEE Transac-
tions on Knowledge and Data Engineering, 2012.

[24] L. Lovasz, “Random walk on graphs: A survey,” Combinatorics, vol. 2,
pp. 1–46, 1993.

[25] P. Sarkar and A. W. Moore, “A tractable approach to finding closest
truncated-commute-time neighbors in large graphs,” in UAI, 2007.

[26] P. Sarkar, A. W. Moore, and A. Prakash, “Fast incremental proximity
search in large graphs,” in ICML, 2008.

[27] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

[28] R.-H. Li, J. X. Yu, X. Huang, and H. Cheng, “Random-walk domination
in large graphs: problem definitions and fast solutions,” Technical report,
http://arxiv.org/abs/1302.4546, 2013.

[29] J. Leskovec, “Standford network analysis project,” 2010. [Online].
Available: http://snap.standford.edu

[30] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” science, 1999.

