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We present our extension of ACL2 with Satisfiability Modulo Theories (SMT) solvers using ACL2’s
trusted clause processor mechanism. We are particularly interested in the verification of physical sys-
tems including Analog and Mixed-Signal (AMS) designs. ACL2 offers strong induction abilities for
reasoning about sequences and SMT complements deduction methods like ACL2 with fast nonlinear
arithmetic solving procedures. While SAT solvers have been integrated into ACL2 in previous work,
SMT methods raise new issues because of their support for a broader range of domains including
real numbers and uninterpreted functions. This paper presents Smt1link, our clause processor for
integrating SMT solvers into ACL2. We describe key design and implementation issues and describe
our experience with its use.

1 Introduction

This paper presents Smt1link, a clause processor for using satisfiability modulo theory (SMT) solvers
to discharge proof goals in ACL2. Prior work has [21} 23] incorporated SAT solving into ACL2, and
Manolios and Srinivasan [16} 22]] described an extension of ACL2 with the Yices SMT solver. Our work
explores the use of SMT solvers for their decision procedures for linear and non-linear arithmetic which,
to the best of our knowledge, has not been addressed in prior work.

Interactive theorem proving and SMT solving provide complementary strengths for verification.
SMT solvers can automatically discharge proof obligations that would be tedious to handle with an
interactive theorem prover alone. Conversely, theorem provers provide methods for proof by induction
and proof structuring methods. While there has been some work on automatically proving induction
proofs using SMT solvers (see [[15]), theorem provers such as ACL2 offer a much more comprehensive
framework for induction proofs. For many problems, SMT solvers cannot prove the main result in a
single step; in fact, the main theorem may not even be expressible in the logic of the SMT solver. How-
ever, the SMT solver can discharge key lemmas to simplify the proof process, and the theorem prover
can ensure that the proofs for the main theorems are, indeed, complete. When used from within an in-
teractive theorem prover, the user can identify key goals and relevant facts to make effective use of the
SMT solver. Doing so can avoid sending the SMT solver down a path of an intractable number of useless
branches and lead instead to a proof of the desired goal.

Our intended application of the combination of ACL2 with an SMT solver is to verify properties
of Analog and Mixed-Signal (AMS) circuits and other cyber-physical systems. AMS circuits are mixed
analog and digital systems, typically consisting of multiple analog and digital feedback loops operating at
much different time scales. It is not practical to simulate AMS circuits for all possible device parameters,
initial conditions, inputs, and operating conditions. In fact, running just one such simulation may require
more time than the design schedule. Most AMS circuits are intended to be correct for relatively simple
reasons - errors occur because the designer’s informal reasoning overlooked some critical case or had
some simple error. Our approach is to verify that the intuitive argument for correctness is indeed correct
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2 Extending ACL2 with Solvers

by reproducing the argument in an automated, interactive theorem prover, ACL2. The advantage of
using a theorem prover is soundness and generality: by using a carefully designed and thoroughly tested
theorem prover, we have high confidence in the theorems that it establishes. The critical limitation of
using a theorem prover is that formulating the proofs can require large amounts of very highly skilled
effort. Our solution is to integrate a SMT solver, Z3, into ACL2. This allows many parts of the proof,
especially those involving large amounts of tedious algebra, to be performed automatically. While our
focus is on AMS, the issues addressed here are common to those in most computing devices and other
physical systems.

Our implementation uses ACL2’s trusted clause processor mechanism for integrating external pro-
cedures. Our goal is to provide a flexible framework for developing proofs in a relatively new applica-
tion domain. Thus, our clause processor is designed to be easily configured and modified by the user.
However, too much freedom to change the behaviour of the clause processor also raises the spectre of
unsoundness. We address this with a two-pronged solution. Our clause processor is available with a stan-
dard configuration, where the soundness depends mainly on the soundness of ACL2, the SMT solver, and
a small amount of interface code. There is also a customizable configuration that has a separate trust-
tag. This facilitates experimentation, but places the burden for soundness directly upon the user. We
describe our use of the two approaches, and show how this combination provides a flexible environment
for experimentation and a safe environment for “production” use.

The key contributions of this work are:

e We present our software architecture for integrating an SMT solver into ACL2 as a trusted clause
processor.

e We describe the issues that arose in this integration, our solutions, and the rationale behind our
design choices.

e Our emphasis is on using the arithmetic capabilities of the Z3 SMT solver. This differs from most
prior work on integrating SMT solvers into theorem provers that has focused on using decision
procedures for SAT, integer arithmetic, and discrete data structures.

e We show how some simple customizations of the general framework can lead to a dramatic reduc-
tion in proof effort.

The rest of this paper is organized as follows: Section [2|introduces our clause processor with three
simple examples. Section [3|describes our software architecture, the issues that arise when integrating an
SMT solver into ACL2, and our solutions to these issues. Section ] describes how the SMT interface can
be customized. In particular, we show how adding a simple inference engine that provides an incomplete
theory of expt greatly simplifies our proofs for verifying properties of an AMS circuit. Sections[5|and [6]
present related work and a summary of the current work respectively.

2 A Short Tour

This section presents simple theorems that can be proven using Smtlink. The examples here assume
that the Smt1ink book has been downloaded from:

https://bitbucket.org/pennyan/smtlink
and certified using cert.pl (see the instructions in the README file). Program [2.1] shows how to in-
clude the Smtlink book where /dir/to/smtlink is the directory with the Smtlink book. The
(tshell-ensure) form allows Smtlink to invoke the SMT solver in a separate process. Smtlink
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Program 2.1 Including the Smt1ink book

(add-include-book-dir :cp "/dir/to/smtlink")
(include-book "top" :dir :cp)
(tshell-ensure)

Program 2.2 A theorem about a system of polynomial inequalities

(defthm poly-ineq-example-a
(implies (and (rationalp x) (rationalp y)
(<= (+ (x 4/5 xx) (xyy)) 1)
(<= (- (xxx) (xyy)) 1))
<=y (- (*x 3 (- x17/8) (- x 17/8)) 3)))
:hints (("Goal"
:clause-processor
(Smtlink clause nil))))

(defthm poly-ineq-example-b
(implies (and (rationalp x) (rationalp y)
(<= (+ (x 2/3 xx) (xyy)) 1)
(k= (- (xxx) (xyy)) 1))
k=3 (+ 2
(- (x 4/9 %))
(- (x xxx %))
(* 1/4 x x x x x %)) ))
:hints (("Goal"
:clause-processor
(Smtlink clause nil))))

supports two configurations. The examples in this section use Smt1ink, which uses default settings. The
other, Smt1link-custom-config, can be configured by the user and is described in Section [

Program shows two examples involving systems of polynomial inequalities: nil is a list of ad-
ditional hints for the clause processor as no further hints are needed for these examples. Why would we
want to prove such theorems? Simple, they illustrate the challenges of using ACL2 to reason about sys-
tems of polynomial inequalities as often appear in models of physical systems including AMS verifica-
tion. Without the clause-processor, the proofs fail in ACL2 with the :nonlinearp hint enabled and with
or without any of the arithmetic books (i.e. arithmetic/top-with-meta, arithmetic-2/meta/top,
arithmetic-3/top, and or arithmetic5/top). Of course, a patient and savvy user could guide ACL2
through a sequence of lemmas and eventually discharge the claims. Using the SMT solver, the theorems
are proven automatically.

Some theorems, while tedious to prove in ACL2, simply cannot be proven by SMT techniques
alone. Consider Program 2.3]  Again, when just using ACL2, the proof fails with or without a
:nonlinearp hint or any of the arithmetic books. As formulated, poly-of-expt-example would
appear to be unsuitable for proof with our SMT techniques because we are using Z3 as our SMT solver,
and Z3 does not support reasoning about non-polynomial functions such as expt. Our solution is to
allow the user to give hints to the clause processor. These hints allow the user to direct the clause
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Program 2.3 A claim with non-polynomial arithmetic

(defthm poly-of-expt-example
(implies (and (rationalp x) (rationalp y) (rationalp z) (integerp m)
(integerp n) (< 0 z) (< z 1) (< 0m) (<Kmn))
(<= (x 2 (expt z n) xy) (x (expt zm) (+ (*x x x) (*xy y)))))
:hints(("Goal"
:clause-processor
(Smtlink clause ’((:let ((expt_z_m (expt z m) rationalp)
(expt_z_n (expt z n) rationalp)))
(:hypothesize ((< expt_z_n expt_z_m)
(< 0 expt_z_m)
(< 0 expt_z_n)))
) )

processor to replace all occurrences of a given expression with a new, free variable, and to express
constraints that are satisfied by these variables. A complete description of these hints is presented in Sec-
tion[3] To prove poly-of-expt-example, we use the clause-processor hint. We also include the book
arithmetic-5/top. The two :1et hints direct Smt1ink to replace all occurrences of (expt z m) with
the variable expt_z_m; furthermore, we are asserting that the value (expt z m) satisfies rationalp.
Likewise for expt_z_n replacing all occurrences of (expt z n). The three :hypothesize hints state
additional constraints on the values of expt_z_m and expt_z_m for use by the SMT solver. With these
substitutions and constraints, Z3 readily discharges the main claim.

For this approach to be sound, these substitions, type-assertions, and constraints must all be implied
by the hypotheses of the original theorem. If the SMT solver discharges the main claim, then Smtlink
returns each of these added assumptions and new clauses to be proven by ACL2. In other words, Smt1ink
has replaced a clause that would be difficult to prove using ACL2 alone, with a moderate number of
simpler clauses that are simpler for ACL2 to establish, plus one clause (the augmented, original claim)
that is proven by the SMT solver. In this case, runes from arithmetic-5/top enable the returned
clauses to be discharged without further assistance. This also illustrates the synergies that are available
by combining SMT techniques with theorem proving.

3 Software architecture of Smtlink

Figure |1| shows the structure of Smt1link. The clause processor translates ACL2 clauses into a Python
representation inspired by Z3’s Python API. The translation process is divided into two phases. The first
phase translates from ACL2 to ACL2. This translation allows the clause-processor to accept a fairly
expressive subset of the ACL2 language while the expanded clauses output by this phase use only a
small set of primitive Lisp functions (See Section[3.2.2). The second phase translates the simplified (but
expanded) ACL2 clauses to our Python API — this process is the main “trusted” aspect of our trusted
clause processor. The SMT solver verifies a clause by showing that its negation is unsatisfiable. If this
is the case, then Smtlink returns a list of clauses for subgoals that arose in the translation process.
Essentially, Smt1link asks ACL2 to verify that the expanded clause implies the original, and to verify
any type assertions or additional hypotheses that were provided by the user. If the SMT solver fails to
show that the clause is unsatisfiable, it typically provides a counter-example that Smt1link then prints



Y. Peng & M. Greenstreet 5

lisp (ACL2) |python (z3)

translation G’/ A, A,, .. A, translation
step 1 step 2

original expand & expanded translate ' Gsur
clause clause | e ; SMT clause
ACL2 (lisp) pity ACL2 (lisp) Py J (python)
original expanded acl2SMT | ~Gsmr
(implies generate | (proven) | Not(cl
expanded return ! ?- (; all)lls? Z3
Origir‘lal) Clause satistia c!

yes
AL NAZ A .../\A,”/\(G/ = G)

generate
return
clause

sat, unsat,
or unknown

Figure 1: Top-level architecture of Smt1link

Program 3.1 A putative theorem without type constraints

i (defthm not-really-a-theorem
> (iff (equal x y) (zerop (- x y))) )

to the ACL2 comment window, although is some cases it may simply report that the satisfiability of the
clause is “unknown”. In these cases, Smtlink prints the counter-example or “unknown” status to the
ACL2 comment window and aborts the proof attempt.

3.1 The first translation phase

The first phase of translation transforms clauses written in a fairly expressive subset of ACL2 into a very
small subset. Most of the complexity of the translation process is in this first phase. As described in
Section Smtlink constructs a new clause that is proven by ACL2 to validate this translation. The
key issues in the first phase are:

o ACL2 is untyped whereas SMT solvers support many-sorted logics.
e ACL2 clauses often include user-defined functions.

e The user may add type assertions and/or extra hypotheses to enable the SMT solver to discharge a
claim. These must be verified by ACL2.

e The user may need to provide hints to enable ACL2 to discharge subgoals that are returned by the
clause processor.

3.1.1 Types

Consider the putative theorem shown in Program [3.1] ACL2 is untyped and requires all functions to be
total. Accordingly, (- x y) is defined for all values for x and y, including non-numeric values. As
defined in ACL2, arithmetic operators such as - treat non-numeric values as if they were 0. Thus, x =
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Program 3.2 A simple theorem with type constraints

(defthm rational-minus-and-equal
(implies (and (rationalp x) (rationalp y))
(iff (equal x y) (zerop (- x y))) ))

’dog and y = (list "hello" 2 ’world) is a counter-example to not-really-a-theorem. On
the other hand, Z3 uses a typed logic, and each variable must have an associated sort. If we treat x and y
as real-valued variables, the z3py equivalent to not-really-a-theorem is

>>> x, y = Reals([’x’, ’y’1)
>>> prove((x == y) == ((x - y) == 0))
proved

In other words, not-really-a-theorem as expressed in the untyped logic of ACL2 is not a theorem,
but the “best” approximation we can make in the many-sorted logic of Z3 is a theorem. To solve these
problems, Smtlink requires that each free variable in a theorem is constrained by an ACL2 type rec-
ognizer such as integerp and rationalp. These are then translated to corresponding SMT sorts with
the design requirement that the set of values in the SMT sort must be a superset (or equal to) the set of
values admitted by the type recognizer.

Although ACL2 is untyped, it is common for users to include assertions such as (rationalp x) that
constrain the types of free-variables appearing in a theorem. Program [3.2] shows the previous, putative
theorem with type recognizers added to the hypotheses. ACL2 proves rational-minus-and-equal
without any assistance from the user. Note that rational-minus-and-equal holds for all values of x
and y including values that are not rational, and values that are not even numeric, such as x = ’dog and
y = (list "hello" 2 ’world). For such cases, the antecedent of the theorem is not satisfied, and
the theorem holds vacuously.

Let G be the clause to be proven by Smt1ink; G is the “goal”. In the first translation phase, Smt1link
traverses G looking for terms of the form (typep var) where typep is one of booleanp, integerp, or
rationalp; var is a symbol (but not nil); and the clause holds vacuously if (not (typep war)).
In other words, such terms are type hypotheses. Smtlink identifies type hypotheses syntactically by
walking the tree for the expression, recognizing the constructions for if, implies, not, and the type-
recognizers (note: the ACL2 macros “and” and “or” expand to terms written with if).

Let T = (1ist T1 T» ...T,) be the list of all type-hypotheses; T denote the conjunction of the
elements of T; and and Gr be G rewritten by replacing each of the 7;’s with the boolean constant t. We
could now construct the terms 7 = Gy, TV G, and ((T V G) A (T = Gr)) = G. We could then invoke
the SMT solver to determine if Gr holds for all valuations of the free variables that satisfy 7. If the
SMT solver can show this, then T = Gr is established. Then, we could return the terms TV G, and
((/T\\/ G) A (f = Gr)) = G to ACL2 to be proven. If these proofs are successful, then we can conclude
that G is a theorem as well. Smt1link uses this approach; however, rather than checking each step of the
first translation phase, it checks the final result. Section [3.3|describes this process.

3.1.2 Functions

The second phase of translation supports a small set of ACL2 built-in functions (see Section [3.2).
Smtlink handles other functions by expanding their calls. In particular (fun actual-parameters) be-



1

Y. Peng & M. Greenstreet 7

Program 3.3 :expand hint

:hints (("Goal"
:clause-processor
(Smtlink °( ...
(:expand ((:functions ((funl typelp) (fun2 type2p)
(funk typekp)))
(:expansion-level 1)))

ce)))

comes
((Lambda (fresh-variables-for-formals) body-of-fun) actual-parameters) (1)

Because body-of-fun may have function instances that need to be expanded, Smt1ink recursively applies
this function-expansion operation to body-of-fun and each term in actual-parameters.

If the function fun has a recursive definition, then the expansion procedure described will not termi-
nate. To avoid this problem, we require the user to specify a maximum expansion depth and the return
type for each function. Smtlink replaces each call beyond the expansion limit with an unconstrained,
fresh SMT variable of the specified return type. The type-hypothesis for each such variable is added to
the type-hypothesis list, 7', and the function call instance that this variable replaces is added to a list of
function calls instances, F. As described in Section [3.3] Smt1link produces a clause for ACL2 to check
to verify that each function call in F returns a value of the user-claimed type. Replacing the function’s
return value with an unconstrained variable is a simple form of generalization.

The user controls function expansion by Smtlink with a :expand hint as shown in Program [3.3]
Each function is specified with its return type, and the :expansion-level parameter specifies the maximum
depth to which any function will be expanded. We write G to denote the clause produced by expanding
the function calls in Gr.

Smtlink also supports translating function calls in ACL2 into uninterpreted function instances. For
example,

(:uninterpreted-functions ((expt rationalp integerp rationalp)))

says that the function expt should be treated as an unintepreted function whose first argument satisfies
rationalp, whose second argument satisfies integerp, and whose return value satisfies rationalp.
Smtlink records each uninterpreted function declaration in a list, U, and each call in F.

The mechanisms for function expansion and uninterpreted functions are similar. In particular, the
replacement of a recursive function call with a fresh variable is a weaker version of replacing it with
an uninterpreted function. On the other hand, we discovered that Z3 does not combine its theories of
non-linear arithmetic and uninterpreted functions: if a formula includes an uninterpreted function, the
non-linear arithmetic solver is silently disabled. Thus, in many cases, using fresh variables is preferred to
using uninterpreted functions. We are examining these trade-offs in examples of real proofs and expect to
formulate a more unified treatment of function expansion and uninterpreted functions in a future version
of Smtlink.

3.1.3 Adding Hypotheses

Often, the proof of a theorem may depend on results that have already been established in ACL2’s logical
world. However, Smt1ink only translates the current goal for the SMT solver. In practice, this is critical:



8 Extending ACL2 with Solvers

while it is tempting to give the SMT solver every constraint that might be relevant, this would often
cause the SMT solver to require more time or memory than is available for the proof. A key feature
of the integration of SMT solvers into a theorem prover is that the user can identify the relevant facts,
and these can be included with :hypothesize hints as illustrated in Program [2.3] Of course, the user
can include any term they like in these hints. If the SMT solver discharges the clause, then each of the
:hypothesize hints is returned as a subgoal. If it corresponds to a previously proven theorem, then
ACL2 will (usually) discharge it without any further assistance. We write H to denote the set of all
hypotheses introduced by :hypothesize hints, H to denote the conjunction of the elements of H, and
Gy = H = Gp = —=H V G to denote the goal clause augmented with these hypotheses.

3.1.4 Substitutions

Proof goals may include terms that do not have a representation in the theories of the chosen SMT solver.
For example, the theorem in Program used the expt function that raises its first argument to an
arbitrary integer power and is not representable in Z3 which only supports fixed-degree polynomials and
rational functions. Rather than abandoning the advantages offered by the SMT solver, Smt1ink allows
the user to specify a replacement of offending sub-expressions by fresh variables of the appropriate
types. All occurrences of the given sub-expression are replaced by the specified variable. This is another
example of generalization by replacing the return value of a function with a fresh variable. It is quite
common, in our experience, to combine these substitutions with : hypothesize hints that constrain the
values of these variables. Furthermore, the type-hypothesis for each new variable is included in the
type-hypotheses list, 7', and the substitutions are recorded in a list S.

These substitutions are the final step of the first phase of translation. We write G’ to denote the result
of this first phase, and refer to it as the “expanded clause”.

3.2 The second translation phase

Given an original goal, G, along with user provided hints, the first translation phase produces an “ex-
panded goal”, G'; a list of type-assertions, T’; a list of functions to be treated as uninterpreted, U; a list
of function call instances, F'; a list of additional hypotheses, H; and a list of substitutions, S. The second
translation phase uses these to produce the variable declarations for the SMT solver and the claim that
the SMT solver is to discharge. If the SMT solver shows that (not (implies H G’)) is unsatisfiable
for valuations of the free variables that satisfy the type-hypotheses, 7', and the uninterpreted function
definitions, U, then Smt1ink concludes that (implies H G’) is a theorem. Unlike the first phase, the
results of the transformations performed in this second phase are not returned to ACL2 to be verified.
Our design goal was to keep this part of the connection as simple as possible to avoid errors and enable
code inspection by cautious users.

3.2.1 Types

For each free-variable, x;, occurring in G (and thus in G’) there should be a corresponding type-assertion,
T; that is a conjunct of T. For each type assertion, (typep; var;), Smtlink generates a corresponding
variable declaration for the SMT solver. For example,

(rationalp x)
translates to

x = _SMT_.isReal("x")
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Program 3.4 The irrationality of /2

(defthm sqrt-of-2-is-irrational
(implies (rationalp x) (not (equal (* x x) 2))))

In our implementation, the Python interface to the SMT solver is in the form of an object, _SMT_. For
example, SMT_. isReal("x") creates a real-valued, symbolic variable for the SMT solver that underlies
_SMT_. If a type-assertion is omitted, then an undeclared variable will appear in the formula to be checked
by the SMT solver, and the SMT solver will report an error and fail.

For soundness, if Smt1ink maps the ACL2 type recognizer typep; to the SMT sort sort;, then every
value that satisfies fypep; must be an element of sort;. Note that sort; may include other values as well,
this simply strengthens the claim G’ and may result in a failure to prove a valid goal, but this will not
cause Smtlink to prove an invalid goal. Smtlink maps the ACL2 type recognizers booleanp to SMT
booleans; the type correspondence is strict. The type recognizers integerp and rationalp are both
mapped to SMT reals. We did this because most SMT solvers (e.g. Z3) provide decision procedures
for real numbers, whereas ACL2 provides rationals. As noted above, this strengthens the claim. For
example, the theorem shown in Program can be proven in ACL2 [10], we cannot discharge it using
Smtlink. It will report the counter-example for x equal to the square-root of two, described as an
algebraic number. Smt1link can also be used with ACL2r, in which case the mismatch between rationals
and reals can be avoided entirely.

Our choice to broaden integerp to SMT rationals (instead of SMT integers) was pragmatic. Our
initial implementation uses the Z3 SMT solver, and we make extensive use of its non-linear arithmetic
solver. Z3 disables the non-linear solver when a formula includes integer-valued variables. By mapping
ACL2 integers to SMT reals, Smt1link strengthens the theorem. We expect to add mechanisms to allow
the user to control whether ACL2 integers map to SMT integers or reals in a future version of Smt1link.

3.2.2 Functions

The nine functions supported are binary-+, unary--, binary-*, unary-/, equal, <, if, not, and
lambda along with the constants t, nil, and arbitrary integer constants. As in ACL2, integers in Python
can be arbitrarily large; thus, Smtlink translates them directly. Smtlink translates ACL2 lambda ex-
pressions into Python lambda expressions. The other eight functions are translated directly to their
counterpart methods of the _SMT_ object. For example, the ACL2 function binary-+ is mapped to
_SMT_.plus. Smtlink generates declarations for all uninterpreted functions, again using the _SMT_ in-
terface.

If G’ includes any functions that are not in the list of eight above or in U, then Smt1link will not
prove G but instead will fail with an error message. In particular, unexpanded occurrences of user-
defined functions will create an error. Furthermore, any type-recognizer such as rationalp in G’ will
create an error — Smt1link requires that all type-recognizer terms occur in contexts that it can recognize
as type-hypotheses; others generate errors. Likewise, G cannot include quantification operators such as
exists or forall. This ensures that all variables appearing in G’ are free which is essential for our
approach of using SMT sorts that are super-sets of their ACL2 equivalents. For example, one cannot
state a theorem that 2 has a rational square root and “prove” it using Smtlink to find a real-valued x
such that xxx = 2.

In the SMT world, each operation (such as +) is defined for specific sorts for its arguments and
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defined to to produce a (symbolic) value of a specific sort for its result. Some of these operations (such
as +) are overloaded to operate on multiple types. If an operator is applied to arguments for which it is not
defined, then the SMT solver fails, and Smt1ink fails to prove the goal. For example, if the original goal,
G, (and thus G') includes a term of the form (+ x b) where x is real and b is boolean, then the SMT
solver will fail even though the operation is defined in ACL2. This interpretation of ACL2 operators is
conservative: Smtlink will not discharge an invalid theorem due to the type restrictions of operators in
the SMT world.

Smtlink translates (/ m) in ACL2 to _SMT_.reciprocal (m), where the SMT function divides
the constant 1 by m. If m # 0, the ACL2 and SMT operations are identical. If m = 0, then the SMT
version produces an unconstrained integer (if m is an integer) or real (if m is real). The ACL2 operator
is defined to return 0. Because the SMT version allows the ACL2 semantics, the SMT version is more
general. Thus, Smt1ink proves a more general claim, and a proof of G’ implies a proof of G. This relies
on our restriction that G cannot include quantification operators.

3.2.3 Hypotheses and Substitutions

These are handled entirely in the transformation of the original goal, G, to the expanded goal, G’, in the
first translation phase and do not impact the second phase.

3.3 Ensuring soundness

Our design goal with Smtlink has been to trust ACL2, the chosen SMT solver (Z3, in our current
implementation), and as little other code as practical. At the same time, our intended use for Smt1link
is for the verification of AMS circuits and other cyber-physical systems. Because we are developing
verification techniques as we go, we want Smt1ink to provide a flexible framework for prototyping new
ideas. Our solution is to put most of the functionality and complexity of Smt1ink into the first translation
phase. If the SMT solver discharges the translated clause, then Smt1ink generates a set of return clauses
to check the correctness of this translation. The second phase is trusted; this code is both small and
simple.

Our basic approach is simple: let A denote the additional assumptions that were added to the goal by
type assertions for variables and function return values, hypotheses, and substitutions. Let Ggyr denote
the clause that is tested by the SMT solver. If the SMT solver proves Gsyr, then Smtlink returns the
clauses

01 = (GNA)=G @)
O = AVG
for proof by ACL2. We are trusting the translation of G’ to Gy and the SMT solver itself, Modulo that
trust, the truth of Gy implies the truth of G’; in which case Q; is equivalent to A = G. Accordingly,
when ACL2 proves Q; and Q», G is established as a theorem.

We make two observations before describing how each step of the translation process contributes to
A. First, the correctness of this argument does not depend on the choice of A. Of course, deriving the
intended A is important to ensure that Q and Q; can actually be proven. Second, A is the conjunction of
the various assumptions that were added by Smt1link. Smtlink expresses (J» as a separate subgoal for
each conjunct of A.



Y. Peng & M. Greenstreet 11

3.3.1 Types

Each type-hypothesis identified by Smtlink is included in A. Let T; = (typep; var;) be such a type-
hypothesis. When proving Q,, ACL2 verifies 7; V G which means that for all values of var; that do
not satisfy typep;, G trivially holds. By the trust that Smt1ink declares var; to be of an SMT sort that
includes all values that satisfy typep;, the translation is valid.

3.3.2 Functions

When a function call is expanded in the first translation phase, the equivalence is checked by ACL2 when
it verifies Q1. We are trusting the translation of ACL2 lambda-expressions to their Python equivalents in
phase 2. When a function call is replaced by a variable, ACL2 must check that the user-claimed type for
the return value of the function is valid. This is done by generating a clause for each function call in F.
Let f be such a function call (i.e. an ACL2 term), and let type, be the user-claimed type for the return
value of f. Smtlink includes a conjunct of the form

(or (1ypey f) G) 3)

in O». A technical detail is that f may include variables that are bound by lambda expression arising
from other function expansions; such variables are free in the clause depicted in Equation [3|as generated
by Smtlink. This means that these variables are less constrained in the check performed by ACL2 than
they are in G’ or Ggyr. Because ACL2 has proven the more general case, we can safely conclude the
more restricted version as well.

3.3.3 Added Hypotheses

Each hypothesis, H;, added by the user, is included in A. The clause (H;V G) is verified by ACL2;
therefore, it is safe to add H; as a hypothesis for G’ (and thus for Gsyr).

3.3.4 Substitutions

Smtlink records the user-defined substitutions in the list S. When generating Q; and O, Smt1link uses
lambda expressions to bind the variables declared in substitution hints to their corresponding expressions
— this is similar to the way that function expansions are handled. Furthermore, the user-claimed types of
these expressions are included in 7', and Smt1link generates clauses for ACL2 to check these claims in
the same manner as checking the types of values returned by function calls.

3.3.5 The Python Interface

Smtlink relies on software packages that are outside the ACL2 world, namely the Python interpreter
and an SMT solver (Z3 for the purposes of this paper). This creates the potential unsoundness that these
external components can be modified without detection. Our implementation of Smt1link takes several
measures to prevent the most likely causes of unsoundness. First, Smt1ink has a default configuration
that is encoded in config.lisp. There is a script for creating config.lisp; once run, the config-
uration includes full path names to the Python interpreter and sets the path variable for searching for
Python classes. Likewise, the Python code to define the class for the interface object, _SMT_ described
in Section is provided as the string returned by the function ACL22SMT. The file ACL22SMT.lisp
is generated from a Python source file that is specific for the intended SMT solver. The consequence of
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this approach is that the paths to the Python interpreter and the SMT solver (and therefore the choice
of the SMT solver), along with the Python class definition for the interface between Smt1link and the
SMT solver are all baked into the certified ACL2 code for Smt1link. We believe that this should make
Smtlink quite robust to unintentional changes of the computing environment. Of course, a nefarious
user could replace the executable image for the Python interpreter, or the dynamic library for the SMT
solver, but these are in “system” directories (under /usr/bin in our installation) rather than user direc-
tories; so such changes are unlikely to be accidental. Such changes are likely to occur as a consequence
of regular software updates. We are considering adding checksum information to our config.lisp to
ensure that such changes are detected and reported. We would like to devise an SMT-solver independent
way of recording such checksums.

3.3.6 Remarks

In the current implementation of Smt1link, the construction of the goals O and Q» is done within the
trusted code of the clause processor. Although the arguments for the correctness of these constructions
are straightforward, the fact that this is unverified code does present a risk of errors. As we have learned
more about ACL2, we now see that an alternative would be to restructure Smt1ink to provide a function
that returns G’ and the lists 7', F, U, H, and S described above. From these, a local theorem, that G’
holds would be proven using a trusted clause processor corresponding to phase 2 of the current Smt1link.
Additional local theorems would be proven by ACL2 to prove Q; and each clause of Q> from Equation[2]
Then, the main theorem, G would be proven by ACL2 using these local theorems. This should be a
relatively straightforward restructuring Smtlink that would isolate the small amount of trusted code.
We plan to do this in the near future.

Even greater confidence could be achieved by adopting the “skeptical” approach advocated by Har-
rison [11], for example by using proof reconstruction [6} 9} [17, |2} [18]] or proof certificates [S]. We see
such efforts as complementary to the approach that we have taken with Smt1ink. We are using Smt1link
to develop proof methods for domains where formal methods have had little prior use. As described in
Section[d] the relatively lightweight interfaces in Smt1ink facilitate such experimentation. We gain this
flexibility at the risk that an error in critical parts of our code (or in the SMT solver itself) could lead to a
“proof” of a non-theorem. We believe that this risk is small compared with other risks that are inherent
in the verification of physical artifacts: most notably, “Does the model of the physical system actually
capture all possible behaviours?” Being able to prototype and develop proofs quickly lets us explore
the consequences of the models more thoroughly than would be possible with a less flexible approach.
Thus, we regard the slight risk of an error as being justified by the opportunity to verify designs that are
otherwise outside the reach of formal tools. We see this as complementary to work on proof reconstruc-
tion and proof certificates. If we demonstrate the kinds of proofs that are useful in practice, that should
illuminate where proof reconstruction and certificates would offer the greatest increase in confidence in
critical designs.

4 Customizing Smtlink

The design choices described in Section [3.3.5]protect the user from unintentional changes to the external
components of Smtlink. What if such changes are desired? To facilitate such experimentation, we
provide a second version of Smtlink, Smtlink-custom-config, where the user can easily change
the configuration of external components. Using Smtlink-custom-config requires a different trust-
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Table 1: Rules for expt

(< (expt x m) (expt x n)), ifl <xandm<n

1. (expt x 0) — 1

2. (expt 0 n) — 0, if n>0
3. (expt x (+ nl n2)) — (x (expt x nl) (expt x n2))

4. (expt x (* c n)) — (* (expt x n) (expt x n) ... (expt x n))

5.

6.

Notes: All rules have a precondition of that either the base is non-zero or the exponent is positive;
furthermore, new instances of expt are only generated if they can be shown to satisfy the same condition.
For rule 4, the right-hand side of — is the multiplication of ¢ copies of (expt x n). Rule 4 is only
applied if c is small and positive.

tag than that for the standard configuration, Smtlink. Thus, it is easy to track theorems whose proofs
descend from a custom configuration of the clause processor. The remainder of this section describes
one such custom configuration to illustrate how these features facilitate experimentation.

Our largest use of Smtlink to date has been the proof of global convergence for a digital phase-
locked loop (The code can be found at [19] and see [20] for more details.). The original proof was a 13
page long latex document, with lots of tedius algebra. Using the standard configuration of Smt1ink, we
completed the same proof using ACL2. The proof is about 1700 lines of ACL2 code. While Smtlink
made the proof possible, it didn’t make it as easy as we had hoped. A key complication is that the phase-
locked loop (PLL) model uses recurrence functions whose solutions make extensive use of ACL2’s
expt function. As described earlier, Smt1link can handle these, but each occurrence requires :let and
:hypothesize hints. Furthermore, function expansion renames variables; so, the proofs involved many
lemmas whose sole purpose was to explicitly expand functions and rewrite terms so as to make the calls
to expt visible in the theorem statement and thus amenable to these hints.

Our solution was to define a new Python class for the _SMT_ interface object. This class is called
RewriteExpt, and it extends the default ACL2_to_Z3 that was complied into ACL22SMT.1lisp as de-
scribed above. To use this extension, expt is declared to be an uninterpreted function. RewriteExpt
overrides the _SMT_. prove method to add a pre-processing step finds instances of expt in the claim.
For each instance, the code checks to see if the hypotheses of the theorem imply the guard for expt:
the base must be non-zero, or the exponent must be non-negative. If the guard can’t be proven, an error
is reported and the proof fails. Otherwise, RewriteExpt applies a small number of simple proof rules
about expt. If the antecedent of one of these rules is satisfied, then the consequent is added as a new
hypothesis. Table[I|shows some examples of these rules.

Preliminary experiments with this customized clause processor have been very promising. For exam-
ple, one theorem in the PLL proof that required 19 supporting lemmas for a total of 334 lines of ACL2
code was replaced by a single theorem stated in 13 lines of ACL2 code. The proofs with the customized
clause processor are much shorter, much simpler, and much easier to understand.

We are in the process of writing a new proof for the PLL based on the customized clause processor.
We see many directions that we could pursue to extend this approach after revising the PLL proof. First,
the customized clause processor uses a set of proof-rules that are hard-coded into RewriteExpt.py.
These correspond to runes for existing ACL2 theorems about expt. We expect that we could forward
such runes from ACL2 to the SMT interface and write a simple, generic inference engine in Python.
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The advantage of performing the inference with the SMT solver is that it can discharge pre-conditions
for runes that ACL2 does not resolve with its waterfall. On the other hand, the ACL2 framework is
much more general than what can be described in the theories of an SMT solver; so we see the two
as complementary. We also note that once our inference engine has discovered a useful hypothesis,
it also has the justification. Thus, we could return these to ACL2 and use them to generate the :let
and :hypothesize needed to discharge the goal with the standard configuration of Smtlink. If this
approach were implemented, then our customized processor would be an elaborate computed hint, but
the goal would be discharged with Smt1ink, and no additional trust would be required.

5 Related work

There has been extensive work in the past decade on integrating SAT and SMT solvers into theorem
provers. Srinivasan [22] integrated the Yices [8]] SMT solver into ACL2 for verifying bit-level pipelined
machines. They also use the mechanism of a trusted clause processor with a translation process quite
similar to ours. They appear to have mostly used the bit-vector arithmetic and SAT solving capabilities
of Yices. While they also produce an expanded formula that is then translated to SMT-LIB [4]], they don’t
describe using ACL2 to check this translation as we have done. Prior to that, in [16l], they integrated a
decision procedure called UCLID [14]] into ACL2 to solve a similar problem.

Works on integrating SMT solvers or techniques into other theorem provers include [17, 9} |5 12} 18,
6l [7]. Many of these papers have followed Harrison and Théry’s “skeptical” approach [11] and focused
on methods for verifying SMT results within the theorem prover using proof reconstruction, certificates,
and similar methods. Several of the papers showed how their methods could be used for the verification
of concurrent algorithms such as clock synchronization [9]], and the Bakery and Memoir algorithms [18]].
While [9]] used the CVC-Lite [3] SMT solver to verify properties of simple quadratic inequalites, the use
of SMT in theorem provers has generally made light use of the arithmetic capability of such solvers. In
fact [6] (Isabelle/Sledgehammer with Z3) reported better results for SMT for several sets of benchmarks
when the arithmetic theory solvers were disabled!

The work that resembles our approach is [[7]; they present a translation of Event-B sequents from
Rodin [1]] to the SMT-LIB format [4]. Like our work, [7] verifies a claim by using a SMT solver to show
that its negation is unsatisfiable. They address issues of types and functions. They perform extensive
rewriting using Event-B sequents, and then have simple translations of the rewritten form into SMT-LIB.
While noting that proof reconstruction is possible in principle, they do not appear to implement such
measures. The main focus of [7]] is supporting the set-theoretic constructs of Event-B. In contrast, our
work shows how the procedures for non-linear arithmetic of a modern SMT solver can be used when
reasoning about analog and mixed-signal circuits.

Our work demonstrates the value of theorem proving combined with SMT solvers for verifying
properties that are characterized by functions on real numbers and vector fields. Accordingly, the linear
and non-linear arithmetic theory solvers have a central role. As our concern is bringing these techniques
to new problem domains, we deliberately take a pragmatic approach to integration and trust both the
theorem prover and the SMT solver.

Prior work on using theorem proving methods to reason about dynamical systems includes [13]
which uses the Isabelle theorem prover to verify bounds on solutions to simple ODEs from a single initial
condition. Harutunian [12] presented a very general framework for reasoning about hybrid systems using
ACL2 and demonstrated the approach with some very simple examples. Here we demonstrate that by
discharging arithmetic proof obligations using a SMT solver, it is practical to reason about much realistic
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designs.

6 Conclusion and future work

This paper presented Smt1ink, a clause-processor that we have used to integrate the Z3 SMT solver into
ACL2. Reasoning about systems of polynomial and rational function equalities and inequalities can be
greatly simplified by using Z3’s non-linear arithmetic capabilities. ACL2 complements Z3 by providing
a versatile induction capability along with a mature environment for proof development and structuring.
Smtlink offers two configurations: the default, standard configuration where the interface code and the
pathways to the external tools (Python and Z3) are fixed when book is certified; and a customizable
interface that allows the user to experiment with extending these capabilities.

Section [3|described our software architecture, issues that arose when integrating an SMT solver into
ACL2, and our solutions to these issues. A key aspect of the design is a two-phase translation process
for converting ACL2 clauses into formulas that can be discharged by the SMT solver. The first phase
translates a fairly expressive subset of ACL2 into a simple subset consisting of nine built-in functions.
This first phase includes methods for handling types, function expansion, uninterpreted functions, and
sub-expression replacement; all of these can be understood as various versions of generalizing the origi-
nal clause to produce a stronger clause that is suitable for discharging with an SMT solver. Most of the
complexity of the translation process is in the first phase. Because ACL2 verifies that the clause produced
by this first phase implies the original, this first phase greatly improves the usability of the clause proces-
sor while raising minimal concerns about soundness. The second phase transliterates the nine remaining
functions to equivalents in a Python API — this is the code that is most critical for sondness.

Section {] showed how the customizable interface can be used to automate tedious aspects of a mod-
erately large (1700 line) proof that we performed with the original version of the clause processor. By
adding a few simple rules for transforming expressions involving the ACL2 expt functions into the
SMT interface, we showed that we could dramatically reduce the length and complexity of some of the
proofs. We believe that this demonstrates the value of Smtlink as an experimental platform. Once
a proposed functionality is shown to have sufficient value, then a more rigorous version could be im-
plemented. The fast prototyping that is enabled by Smtlink can help guide this process by avoiding
investing large amounts of effort on some approach that ultimately provides small improvements to the
proof development process.

Prior work on integrating SMT solvers into theorem provers has focused on using the non-numerical
decision procedures of an SMT solver. Our work focuses on the value of bringing an SMT solver into a
theorem prover for reasoning about systems where a digital controller interacts with a continuous, analog,
physical system. The analysis of such systems often involves long, tedious, and error-prone derivations
that primarily use linear algebra and polynomials. These are domains where SMT solvers combined with
induction and proof structuring have great promise.

6.1 Future work

Smtlink returns clauses to ACL2 to check the translation of the original goal to a small subset of ACL2.
As noted in Section[3.3.6] a moderate restructuring of this code could allow most of this work to be done
within ACL2 and reduce the amount of code that must be trusted in Smt1ink. We believe that this could
be done with minimal impact on the flexibility of Smt1ink for experimenting with SMT solvers and their
applications.
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We have used ACL2 with Smtlink to prove the most challenging part of a global convergence
argument for a digital Phase-Locked Loop (PLL) using Smtlink. Global convergence is a response
property, and we can show that the PLL makes progress through four distinct phases. We used ACL2
with Smt1link to verify the phase for which a hand-written proof was the most complicated. We would
like to write proofs in ACL2 for the other three phases and use ACL2 to prove that those results are
sufficient to prove correct convergence from any initial condition. This will involve constructing Skolem
functions to compose the individual pieces of the proof and should demonstrate the strength of using
ACL2 to prove properties that cannot be expressed in the logic of the SMT solver.

We would like to add a bounded model checking capability to SMT link. For example, in the PLL
proof, there is a tedious proof at the boundary of two of the phases. Z3 provides an “easy” proof by
showing that within eight steps of the recurrence, the transition between phases is complete and correct.
We would lke to integrate this capability into Smt1ink and thus into ACL2.

The current implementation of Smtlink provides very restricted support for recursive functions.
This is because most recursive functions are non-numerical and/or use “fixing” functions or recognizers
to ensure termination when called with bogus arguments. While this has not been problematic for our
PLL proof, we would like to generalize the handling of types by Smtlink to allow a wider range of
applications.

Many of the type-checking steps performed by Smt1link reconstruct facts that are already present in
ACL2s type-alist. We would like to see if this information could be used by Smt1link and thus spare
the user of many of the type declaration that Smt1ink now requires.

Presently, Smtlink prints counter-examples from the SMT solver to the ACL2 comment window.
We would like to make them available to the user within the ACL2 environment. This could be similar
to the env$ argument used in Satlink. New issues arise in the SMT case because SMT formulas don’t
have a single, syntactical form like CNF for SAT. Furthermore, if the counter-example included irrational
numbers, then it cannot be represented in ACL2 — although this should be addressed in ACL2(r).
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