Stability of Collocation at Gaussian Points

ID
TR-84-13
Authors
Uri Ascher and G. Bader
Publishing date
October 1984
Abstract

Symmetric Runge-Kutta schemes are particularly useful for solving stiff two-point boundary value problems. Such A-stable schemes perform well in many cases, but it is demonstrated that in some instances the stronger property of algebraic stability is required.

A characterization of symmetric, algebraically stable Runge-Kutta schemes is given. The class of schemes thus defined turns out not to be very rich: The only collocation schemes in it are those based on Gauss points, and other schemes in the class do not seem to offer any advantage over collocation at Gaussian points.

File(s)